4 resultados para Lipschitz Mappings
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
This PhD thesis in Mathematics belongs to the field of Geometric Function Theory. The thesis consists of four original papers. The topic studied deals with quasiconformal mappings and their distortion theory in Euclidean n-dimensional spaces. This theory has its roots in the pioneering papers of F. W. Gehring and J. Väisälä published in the early 1960’s and it has been studied by many mathematicians thereafter. In the first paper we refine the known bounds for the so-called Mori constant and also estimate the distortion in the hyperbolic metric. The second paper deals with radial functions which are simple examples of quasiconformal mappings. These radial functions lead us to the study of the so-called p-angular distance which has been studied recently e.g. by L. Maligranda and S. Dragomir. In the third paper we study a class of functions of a real variable studied by P. Lindqvist in an influential paper. This leads one to study parametrized analogues of classical trigonometric and hyperbolic functions which for the parameter value p = 2 coincide with the classical functions. Gaussian hypergeometric functions have an important role in the study of these special functions. Several new inequalities and identities involving p-analogues of these functions are also given. In the fourth paper we study the generalized complete elliptic integrals, modular functions and some related functions. We find the upper and lower bounds of these functions, and those bounds are given in a simple form. This theory has a long history which goes back two centuries and includes names such as A. M. Legendre, C. Jacobi, C. F. Gauss. Modular functions also occur in the study of quasiconformal mappings. Conformal invariants, such as the modulus of a curve family, are often applied in quasiconformal mapping theory. The invariants can be sometimes expressed in terms of special conformal mappings. This fact explains why special functions often occur in this theory.
Resumo:
Työn tavoitteena oli selvittää palkanlaskennan nykytilaa ja sen uudistamisen mahdollisuuksia etenkin SAP HR-ohjelmiston valossa. Ensin selvitettiin palkanlaskentaan ja sovellushankintaan liittyviä vaatimuksia kirjallisuuden avulla. Tämän jälkeen tutustuttiin palkanlaskennan nykytilaan haastattelujen, prosessikuvausten ja sisäisten dokumenttien avulla. SAP HR-ohjelmistoon tutustuttiin siihen liittyneiden työtehtävien, erilaisten koulutusmateriaalien ja esittelyiden avulla. Yrityksessä on jo aiemmin yritetty korvata henkilöstö- ja palkanlaskentajärjestelmiä, mutta projekti keskeytettiin. SAP HR-ohjelmiston henkilöstöhallinto-osuutta ollaan ottamassa käyttöön koko yrityksen laajuudessa. Palkanlaskentajärjestelmä vaatii pikaista uusintaa vanhan teknologian ja suuren henkilöriippuvuuden takia. Nykyiset työajanhallinnan ja palkanlaskennan prosessit yrityksessä ovat tiukasti sidottuja nykyisten järjestelmien kanssa ja uuden järjestelmän käyttöönotto vaatii muutoksia koko ketjuun työvuorojen suunnittelusta palkanlaskentaan ja raportointiin asti. Johtopäätöksenä todetaan SAP HR:n palkanlaskennan soveltuvan yrityksen palkanlaskentaan ja tarjoavan monia uusia mahdollisuuksia. Suurimmat mahdollisuudet liittyvät kokonaisten prosessiketjujen läpinäkyvyyteen ja parempaan ohjailtavuuteen. Tämä kuitenkin vaatii nykyistä tarkempaa sisäisten prosessien selvittämistä, SAP HR-palkanlaskennan kyvykkyyden tarkempaa tutkimisia, vaihtoehtoisten ohjelmien vertailua sekä ennen kaikkea valmiutta muuttaa nykyisiä prosesseja.
Resumo:
The thesis presents results obtained during the authors PhD-studies. First systems of language equations of a simple form consisting of just two equations are proved to be computationally universal. These are systems over unary alphabet, that are seen as systems of equations over natural numbers. The systems contain only an equation X+A=B and an equation X+X+C=X+X+D, where A, B, C and D are eventually periodic constants. It is proved that for every recursive set S there exists natural numbers p and d, and eventually periodic sets A, B, C and D such that a number n is in S if and only if np+d is in the unique solution of the abovementioned system of two equations, so all recursive sets can be represented in an encoded form. It is also proved that all recursive sets cannot be represented as they are, so the encoding is really needed. Furthermore, it is proved that the family of languages generated by Boolean grammars is closed under injective gsm-mappings and inverse gsm-mappings. The arguments apply also for the families of unambiguous Boolean languages, conjunctive languages and unambiguous languages. Finally, characterizations for morphisims preserving subfamilies of context-free languages are presented. It is shown that the families of deterministic and LL context-free languages are closed under codes if and only if they are of bounded deciphering delay. These families are also closed under non-codes, if they map every letter into a submonoid generated by a single word. The family of unambiguous context-free languages is closed under all codes and under the same non-codes as the families of deterministic and LL context-free languages.
Resumo:
This Ph.D. thesis consists of four original papers. The papers cover several topics from geometric function theory, more specifically, hyperbolic type metrics, conformal invariants, and the distortion properties of quasiconformal mappings. The first paper deals mostly with the quasihyperbolic metric. The main result gives the optimal bilipschitz constant with respect to the quasihyperbolic metric for the M¨obius self-mappings of the unit ball. A quasiinvariance property, sharp in a local sense, of the quasihyperbolic metric under quasiconformal mappings is also proved. The second paper studies some distortion estimates for the class of quasiconformal self-mappings fixing the boundary values of the unit ball or convex domains. The distortion is measured by the hyperbolic metric or hyperbolic type metrics. The results provide explicit, asymptotically sharp inequalities when the maximal dilatation of quasiconformal mappings tends to 1. These explicit estimates involve special functions which have a crucial role in this study. In the third paper, we investigate the notion of the quasihyperbolic volume and find the growth estimates for the quasihyperbolic volume of balls in a domain in terms of the radius. It turns out that in the case of domains with Ahlfors regular boundaries, the rate of growth depends not merely on the radius but also on the metric structure of the boundary. The topic of the fourth paper is complete elliptic integrals and inequalities. We derive some functional inequalities and elementary estimates for these special functions. As applications, some functional inequalities and the growth of the exterior modulus of a rectangle are studied.