1 resultado para Linoleic acid (LA)

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of new technologies to supplement fossil resources has led to a growing interest in the utilization of alternative routes. Biomass is a rich renewable feedstock for producing fine chemicals, polymers, and a variety of commodities replacing petroleumderived chemicals. Transformation of biomass into diverse valuable chemicals is the key concept of a biorefinery. Catalytic conversion of biomass, which reduces the use of toxic chemicals is one of the important approaches to improve the profitability of biorefineries. Utilization of gold catalysts allows conducting reactions under environmentally-friendly conditions, with a high catalytic activity and selectivity. Gold-catalyzed valorization of several biomass-derived compounds as an alternative approach to the existing technologies was studied in this work. Isomerization of linoleic acid via double bond migration towards biologically active conjugated linoleic acid isomers (CLA) was investigated. The activity and selectivity of various gold catalysts towards cis-9,trans-11-CLA and trans-10,cis-12-CLA were investigated in a semi-batch reactor, showing that the yield of the desired products varied, depending on the catalyst support. The structure sensitivity in the selective oxidation of arabinose was demonstrated using a series of gold catalysts with different Au cluster sizes in a shaker reactor operating in a semibatch mode. The gas-phase selective oxidation of ethanol was studied and the influence of the catalyst support on the catalytic performance was investigated. The selective oxidation of the lignan hydroxymatairesinol (HMR), extracted from the Norway spruce (Picea abies) knots, to the lignan oxomatairesinol (oxoMAT) was extensively investigated. The influence of the reaction conditions and catalyst properties on the yield of oxoMAT was evaluated. In particular, the structure sensitivity of the reaction was demonstrated. The catalyst deactivation and regeneration procedures were studied. The reaction kinetics and mechanism were advanced.