37 resultados para Linear combination

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tässä diplomityössä tutkitaan tekniikoita, joillavesileima lisätään spektrikuvaan, ja menetelmiä, joilla vesileimat tunnistetaanja havaitaan spektrikuvista. PCA (Principal Component Analysis) -algoritmia käyttäen alkuperäisten kuvien spektriulottuvuutta vähennettiin. Vesileiman lisääminen spektrikuvaan suoritettiin muunnosavaruudessa. Ehdotetun mallin mukaisesti muunnosavaruuden komponentti korvattiin vesileiman ja toisen muunnosavaruuden komponentin lineaarikombinaatiolla. Lisäyksessä käytettävää parametrijoukkoa tutkittiin. Vesileimattujen kuvien laatu mitattiin ja analysoitiin. Suositukset vesileiman lisäykseen esitettiin. Useita menetelmiä käytettiin vesileimojen tunnistamiseen ja tunnistamisen tulokset analysoitiin. Vesileimojen kyky sietää erilaisia hyökkäyksiä tarkistettiin. Diplomityössä suoritettiin joukko havaitsemis-kokeita ottamalla huomioon vesileiman lisäyksessä käytetyt parametrit. ICA (Independent Component Analysis) -menetelmää pidetään yhtenä mahdollisena vaihtoehtona vesileiman havaitsemisessa.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wind power is a low-carbon energy production form that reduces the dependence of society on fossil fuels. Finland has adopted wind energy production into its climate change mitigation policy, and that has lead to changes in legislation, guidelines, regional wind power areas allocation and establishing a feed-in tariff. Wind power production has indeed boosted in Finland after two decades of relatively slow growth, for instance from 2010 to 2011 wind energy production increased with 64 %, but there is still a long way to the national goal of 6 TWh by 2020. This thesis introduces a GIS-based decision-support methodology for the preliminary identification of suitable areas for wind energy production including estimation of their level of risk. The goal of this study was to define the least risky places for wind energy development within Kemiönsaari municipality in Southwest Finland. Spatial multicriteria decision analysis (SMCDA) has been used for searching suitable wind power areas along with many other location-allocation problems. SMCDA scrutinizes complex ill-structured decision problems in GIS environment using constraints and evaluation criteria, which are aggregated using weighted linear combination (WLC). Weights for the evaluation criteria were acquired using analytic hierarchy process (AHP) with nine expert interviews. Subsequently, feasible alternatives were ranked in order to provide a recommendation and finally, a sensitivity analysis was conducted for the determination of recommendation robustness. The first study aim was to scrutinize the suitability and necessity of existing data for this SMCDA study. Most of the available data sets were of sufficient resolution and quality. Input data necessity was evaluated qualitatively for each data set based on e.g. constraint coverage and attribute weights. Attribute quality was estimated mainly qualitatively by attribute comprehensiveness, operationality, measurability, completeness, decomposability, minimality and redundancy. The most significant quality issue was redundancy as interdependencies are not tolerated by WLC and AHP does not include measures to detect them. The third aim was to define the least risky areas for wind power development within the study area. The two highest ranking areas were Nordanå-Lövböle and Påvalsby followed by Helgeboda, Degerdal, Pungböle, Björkboda, and Östanå-Labböle. The fourth aim was to assess the recommendation reliability, and the top-ranking two areas proved robust whereas the other ones were more sensitive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Väkirehuun lisätyn glyserolin tai vapaiden rasvahappojen tai näiden yhdistelmän vaikutus maidontuotantoon ja pötsifermentaatioon ruokittaessa lypsylehmiä säilörehuun perustuvalla ruokinnalla

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Katteiden käyttö mansikanviljelyssä

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Abstract]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The accumulation of aqueous pollutants is becoming a global problem. The search for suitable methods and/or combinations of water treatment processes is a task that can slow down and stop the process of water pollution. In this work, the method of wet oxidation was considered as an appropriate technique for the elimination of the impurities present in paper mill process waters. It has been shown that, when combined with traditional wastewater treatment processes, wet oxidation offers many advantages. The combination of coagulation and wet oxidation offers a new opportunity for the improvement of the quality of wastewater designated for discharge or recycling. First of all, the utilization of coagulated sludge via wet oxidation provides a conditioning process for the sludge, i.e. dewatering, which is rather difficult to carry out with untreated waste. Secondly, Fe2(SO4)3, which is employed earlier as a coagulant, transforms the conventional wet oxidation process into a catalytic one. The use of coagulation as the post-treatment for wet oxidation can offer the possibility of the brown hue that usually accompanies the partial oxidation to be reduced. As a result, the supernatant is less colored and also contains a rather low amount of Fe ions to beconsidered for recycling inside mills. The thickened part that consists of metal ions is then recycled back to the wet oxidation system. It was also observed that wet oxidation is favorable for the degradation of pitch substances (LWEs) and lignin that are present in the process waters of paper mills. Rather low operating temperatures are needed for wet oxidation in order to destruct LWEs. The oxidation in the alkaline media provides not only the faster elimination of pitch and lignin but also significantly improves the biodegradable characteristics of wastewater that contains lignin and pitch substances. During the course of the kinetic studies, a model, which can predict the enhancements of the biodegradability of wastewater, was elaborated. The model includes lumped concentrations suchas the chemical oxygen demand and biochemical oxygen demand and reflects a generalized reaction network of oxidative transformations. Later developments incorporated a new lump, the immediately available biochemical oxygen demand, which increased the fidelity of the predictions made by the model. Since changes in biodegradability occur simultaneously with the destruction of LWEs, an attempt was made to combine these two facts for modeling purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to investigate some important features of granular flows and suspension flows by computational simulation methods. Granular materials have been considered as an independent state ofmatter because of their complex behaviors. They sometimes behave like a solid, sometimes like a fluid, and sometimes can contain both phases in equilibrium. The computer simulation of dense shear granular flows of monodisperse, spherical particles shows that the collisional model of contacts yields the coexistence of solid and fluid phases while the frictional model represents a uniform flow of fluid phase. However, a comparison between the stress signals from the simulations and experiments revealed that the collisional model would result a proper match with the experimental evidences. Although the effect of gravity is found to beimportant in sedimentation of solid part, the stick-slip behavior associated with the collisional model looks more similar to that of experiments. The mathematical formulations based on the kinetic theory have been derived for the moderatesolid volume fractions with the assumption of the homogeneity of flow. In orderto make some simulations which can provide such an ideal flow, the simulation of unbounded granular shear flows was performed. Therefore, the homogeneous flow properties could be achieved in the moderate solid volume fractions. A new algorithm, namely the nonequilibrium approach was introduced to show the features of self-diffusion in the granular flows. Using this algorithm a one way flow can beextracted from the entire flow, which not only provides a straightforward calculation of self-diffusion coefficient but also can qualitatively determine the deviation of self-diffusion from the linear law at some regions nearby the wall inbounded flows. Anyhow, the average lateral self-diffusion coefficient, which was calculated by the aforementioned method, showed a desirable agreement with thepredictions of kinetic theory formulation. In the continuation of computer simulation of shear granular flows, some numerical and theoretical investigations were carried out on mass transfer and particle interactions in particulate flows. In this context, the boundary element method and its combination with the spectral method using the special capabilities of wavelets have been introduced as theefficient numerical methods to solve the governing equations of mass transfer in particulate flows. A theoretical formulation of fluid dispersivity in suspension flows revealed that the fluid dispersivity depends upon the fluid properties and particle parameters as well as the fluid-particle and particle-particle interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for the analysis of high-speed solid-rotor induction motors in presented. The analysis is based on a new combination of the three dimensional linear method and the transfer matrix method. Both saturation and finite length effects are taken into account. The active region of the solid rotor is divided into saturated and unsaturated parts. The time dependence is assumed to be sinusoidal and phasor quantities are used in the solution. The method is applied to the calculation of smooth solid rotors manufactured of different materials. Six rotor materials are tested: three construction steels, pure iron, a cobaltiron alloy and an aluminium alloy. The results obtained by the method agree fairly well with the measurement quantities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Industry's growing need for higher productivity is placing new demands on mechanisms connected with electrical motors, because these can easily lead to vibration problems due to fast dynamics. Furthermore, the nonlinear effects caused by a motor frequently reduce servo stability, which diminishes the controller's ability to predict and maintain speed. Hence, the flexibility of a mechanism and its control has become an important area of research. The basic approach in control system engineering is to assume that the mechanism connected to a motor is rigid, so that vibrations in the tool mechanism, reel, gripper or any apparatus connected to the motor are not taken into account. This might reduce the ability of the machine system to carry out its assignment and shorten the lifetime of the equipment. Nonetheless, it is usually more important to know how the mechanism, or in other words the load on the motor, behaves. A nonlinear load control method for a permanent magnet linear synchronous motor is developed and implemented in the thesis. The purpose of the controller is to track a flexible load to the desired velocity reference as fast as possible and without awkward oscillations. The control method is based on an adaptive backstepping algorithm with its stability ensured by the Lyapunov stability theorem. As a reference controller for the backstepping method, a hybrid neural controller is introduced in which the linear motor itself is controlled by a conventional PI velocity controller and the vibration of the associated flexible mechanism is suppressed from an outer control loop using a compensation signal from a multilayer perceptron network. To avoid the local minimum problem entailed in neural networks, the initial weights are searched for offline by means of a differential evolution algorithm. The states of a mechanical system for controllers are estimated using the Kalman filter. The theoretical results obtained from the control design are validated with the lumped mass model for a mechanism. Generalization of the mechanism allows the methods derived here to be widely implemented in machine automation. The control algorithms are first designed in a specially introduced nonlinear simulation model and then implemented in the physical linear motor using a DSP (Digital Signal Processor) application. The measurements prove that both controllers are capable of suppressing vibration, but that the backstepping method is superior to others due to its accuracy of response and stability properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rotating machine usually consists of a rotor and bearings that supports it. The nonidealities in these components may excite vibration of the rotating system. The uncontrolled vibrations may lead to excessive wearing of the components of the rotating machine or reduce the process quality. Vibrations may be harmful even when amplitudes are seemingly low, as is usually the case in superharmonic vibration that takes place below the first critical speed of the rotating machine. Superharmonic vibration is excited when the rotational velocity of the machine is a fraction of the natural frequency of the system. In such a situation, a part of the machine’s rotational energy is transformed into vibration energy. The amount of vibration energy should be minimised in the design of rotating machines. The superharmonic vibration phenomena can be studied by analysing the coupled rotor-bearing system employing a multibody simulation approach. This research is focused on the modelling of hydrodynamic journal bearings and rotorbearing systems supported by journal bearings. In particular, the non-idealities affecting the rotor-bearing system and their effect on the superharmonic vibration of the rotating system are analysed. A comparison of computationally efficient journal bearing models is carried out in order to validate one model for further development. The selected bearing model is improved in order to take the waviness of the shaft journal into account. The improved model is implemented and analyzed in a multibody simulation code. A rotor-bearing system that consists of a flexible tube roll, two journal bearings and a supporting structure is analysed employing the multibody simulation technique. The modelled non-idealities are the shell thickness variation in the tube roll and the waviness of the shaft journal in the bearing assembly. Both modelled non-idealities may cause subharmonic resonance in the system. In multibody simulation, the coupled effect of the non-idealities can be captured in the analysis. Additionally one non-ideality is presented that does not excite the vibrations itself but affects the response of the rotorbearing system, namely the waviness of the bearing bushing which is the non-rotating part of the bearing system. The modelled system is verified with measurements performed on a test rig. In the measurements the waviness of bearing bushing was not measured and therefore it’s affect on the response was not verified. In conclusion, the selected modelling approach is an appropriate method when analysing the response of the rotor-bearing system. When comparing the simulated results to the measured ones, the overall agreement between the results is concluded to be good.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the thesis is to study the principles of the permanent magnet linear synchronous motor (PMLSM) and to develop a simulator model of direct force controlled PMLSM. The basic motor model is described by the traditional two-axis equations. The end effects, cogging force and friction model are also included into the final motor model. Direct thrust force control of PMLSM is described and modelled. The full system model is proven by comparison with the data provided by the motor manufacturer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Characterizing Propionibacterium freudenreichii ssp. shermanii JS and Lactobacillus rhamnosus LC705 as a new probiotic combination: basic properties of JS and pilot in vivo assessment of the combination Each candidate probiotic strain has to have the documentation for the proper identification with current molecular tools, for the biological properties, for the safety aspects and for the health benefits in human trials if the intention is to apply the strain as health promoting culture in the commercial applications. No generalization based on species properties of an existing probiotic are valid for any novel strain, as strain specific differences appear e.g. in the resistance to GI tract conditions and in health promoting benefits (Madsen, 2006). The strain evaluation based on individual strain specific probiotic characteristics is therefore the first key action for the selection of the new probiotic candidate. The ultimate goal in the selection of the probiotic strain is to provide adequate amounts of active, living cells for the application and to guarantee that the cells are physiologically strong enough to survive and be biologically active in the adverse environmental conditions in the product and in GI tract of the host. The in vivo intervention studies are expensive and time consuming; therefore it is not rational to test all the possible candidates in vivo. Thus, the proper in vitro studies are helping to eliminate strains which are unlikely to perform well in vivo. The aims of this study were to characterize the strains of Propionibacterium freudenreichii ssp. shermanii JS and Lactobacillus rhamnosus LC705, both used for decades as cheese starter cultures, for their technological and possible probiotic functionality applied in a combined culture. The in vitro studies of Propionibacterium freudenreichii ssp. shermanii JS focused on the monitoring of the viability rates during the acid and bile treatments and on the safety aspects such as antibiotic susceptibility and adhesion. The studies with the combination of the strains JS and LC705 administered in fruit juices monitored the survival of the strains JS and LC705 during the GI transit and their effect on gut wellbeing properties measured as relief of constipation. In addition, safety parameters such as side effects and some peripheral immune parameters were assessed. Separately, the combination of P. freudenreichii ssp. shermanii JS and Lactobacillus rhamnosus LC705 was evaluated from the technological point of view as a bioprotective culture in fermented foods and wheat bread applications. In this study, the role ofP. freudenreichii ssp. shermanii JS as a candidate probiotic culture alone and in a combination with L. rhamnosus LC705 was demonstrated. Both strains were transiently recovered in high numbers in fecal samples of healthy adults during the consumption period. The good survival through the GI transit was proven for both strains with a recovery rate from 70 to 80% for the JS strain and from 40 to 60% for the LC705 strain from the daily dose of 10 log10 CFU. The good survival was shown from the consumption of fruit juices which do not provide similar matrix protection for the cells as milk based products. The strain JS did not pose