31 resultados para Linear Series

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Raw measurement data does not always immediately convey useful information, but applying mathematical statistical analysis tools into measurement data can improve the situation. Data analysis can offer benefits like acquiring meaningful insight from the dataset, basing critical decisions on the findings, and ruling out human bias through proper statistical treatment. In this thesis we analyze data from an industrial mineral processing plant with the aim of studying the possibility of forecasting the quality of the final product, given by one variable, with a model based on the other variables. For the study mathematical tools like Qlucore Omics Explorer (QOE) and Sparse Bayesian regression (SB) are used. Later on, linear regression is used to build a model based on a subset of variables that seem to have most significant weights in the SB model. The results obtained from QOE show that the variable representing the desired final product does not correlate with other variables. For SB and linear regression, the results show that both SB and linear regression models built on 1-day averaged data seriously underestimate the variance of true data, whereas the two models built on 1-month averaged data are reliable and able to explain a larger proportion of variability in the available data, making them suitable for prediction purposes. However, it is concluded that no single model can fit well the whole available dataset and therefore, it is proposed for future work to make piecewise non linear regression models if the same available dataset is used, or the plant to provide another dataset that should be collected in a more systematic fashion than the present data for further analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time series analysis can be categorized into three different approaches: classical, Box-Jenkins, and State space. Classical approach makes a basement for the analysis and Box-Jenkins approach is an improvement of the classical approach and deals with stationary time series. State space approach allows time variant factors and covers up a broader area of time series analysis. This thesis focuses on parameter identifiablity of different parameter estimation methods such as LSQ, Yule-Walker, MLE which are used in the above time series analysis approaches. Also the Kalman filter method and smoothing techniques are integrated with the state space approach and MLE method to estimate parameters allowing them to change over time. Parameter estimation is carried out by repeating estimation and integrating with MCMC and inspect how well different estimation methods can identify the optimal model parameters. Identification is performed in probabilistic and general senses and compare the results in order to study and represent identifiability more informative way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Abstract]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a new two-dimensional shear deformable beam element based on the absolute nodal coordinate formulation is proposed. The nonlinear elastic forces of the beam element are obtained using a continuum mechanics approach without employing a local element coordinate system. In this study, linear polynomials are used to interpolate both the transverse and longitudinal components of the displacement. This is different from other absolute nodal-coordinate-based beam elements where cubic polynomials are used in the longitudinal direction. The accompanying defects of the phenomenon known as shear locking are avoided through the adoption of selective integration within the numerical integration method. The proposed element is verified using several numerical examples, and the results are compared to analytical solutions and the results for an existing shear deformable beam element. It is shown that by using the proposed element, accurate linear and nonlinear static deformations, as well as realistic dynamic behavior, can be achieved with a smaller computational effort than by using existing shear deformable two-dimensional beam elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to investigate some important features of granular flows and suspension flows by computational simulation methods. Granular materials have been considered as an independent state ofmatter because of their complex behaviors. They sometimes behave like a solid, sometimes like a fluid, and sometimes can contain both phases in equilibrium. The computer simulation of dense shear granular flows of monodisperse, spherical particles shows that the collisional model of contacts yields the coexistence of solid and fluid phases while the frictional model represents a uniform flow of fluid phase. However, a comparison between the stress signals from the simulations and experiments revealed that the collisional model would result a proper match with the experimental evidences. Although the effect of gravity is found to beimportant in sedimentation of solid part, the stick-slip behavior associated with the collisional model looks more similar to that of experiments. The mathematical formulations based on the kinetic theory have been derived for the moderatesolid volume fractions with the assumption of the homogeneity of flow. In orderto make some simulations which can provide such an ideal flow, the simulation of unbounded granular shear flows was performed. Therefore, the homogeneous flow properties could be achieved in the moderate solid volume fractions. A new algorithm, namely the nonequilibrium approach was introduced to show the features of self-diffusion in the granular flows. Using this algorithm a one way flow can beextracted from the entire flow, which not only provides a straightforward calculation of self-diffusion coefficient but also can qualitatively determine the deviation of self-diffusion from the linear law at some regions nearby the wall inbounded flows. Anyhow, the average lateral self-diffusion coefficient, which was calculated by the aforementioned method, showed a desirable agreement with thepredictions of kinetic theory formulation. In the continuation of computer simulation of shear granular flows, some numerical and theoretical investigations were carried out on mass transfer and particle interactions in particulate flows. In this context, the boundary element method and its combination with the spectral method using the special capabilities of wavelets have been introduced as theefficient numerical methods to solve the governing equations of mass transfer in particulate flows. A theoretical formulation of fluid dispersivity in suspension flows revealed that the fluid dispersivity depends upon the fluid properties and particle parameters as well as the fluid-particle and particle-particle interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shortening development times of mobile phones are also accelerating the development times of mobile phone software. New features and software components should be partially implemented and tested before the actual hardware is ready. This brings challenges to software development and testing environments, especially on the user interface side. New features should be able to be tested in an environment, which has a look and feel like a real phone. Simulation environments are used to model real mobile phones. This makes possible to execute software in a mobile phone that does not yet exist. The purpose of this thesis is to integrate Socket Server software component to Series 40 simulation environments on Linux and Windows platforms. Socket Server provides TCP/IP connectivity for applications. All other software and hardware components below Socket Server do not exist in simulation environments. The scope of this work is to clarify how that can be done without connectivity problems, including design, implementation and testing phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tutkimuksen tavoitteena oli arvioida alueellista kehitystä tietämysperustaisesta aluenäkemyksestä käsin Kanta-Hämeen maakunnassa. Tarkoituksena oli myös selvittää millaisia resursseja alueella on tai tulisi olla tulevaisuuden kestävää kilpailukykyä ajatellen. Tietämysperustaisen aluenäkemyksen mukaan kaikista alueella käytettävissä olevista resursseista alueen kestävän kilpailukyvyn lähteenä on tieto, erityisesti hiljainen tieto. Kirjallisuus korostaa myös innovaatioiden merkitystä kilpailukyvyn lähteenä. Työssä käytetystä näkökulmasta katsoen innovaatiot ovat epälineaarisia ja vuorovaikutteisia oppimisprosesseja, joissa sosiaaliset tekijät, kuten yhteistyö ja oppiminen ovat tärkeitä. Työn empiirinen osuus koostuu ryhmähaastatteluista ja yrityskyselystä. Ryhmähaastatteluja käytettiin alueen nykyisen teknotaloudellisen tilanteen ymmärtämiseksi. Ryhmä koostui viidestätoista alueen kehittäjäorganisaatioihin kuuluneesta toimijasta. Ryhmähaastattelujen perusteella yhteistyö, vuorovaikutus ja sosiaalinen pääoma olivat niiden tekijöiden joukossa, jotka vaikuttavat alueen pitkän aikavälin kehittämiseen. Ryhmähaastattelujen avulla oli myös mahdollista muodostaa joitakin ehdotuksia alueen kilpailukykyä koskevista kehittämisen edellytyksistä. Nämä ehdotukset täytyy testata tulevaisuudessa. Tarvitaan myös tarkempaa tutkimusta esimerkiksi sen ymmärtämiseksi, mitkä tekijät vaikuttavat sosiaalisen pääoman muotoutumiseen alueen eri toimijoiden välillä. Yrityskysely koostui 86 yrityksen tiedoista. Kysely toteutettiin kesällä 2004. Tuote- ja palveluinnovaatioilla ja innovaatiotoimintaan tehdyillä tutkimus- ja kehittämispanostuksilla mitaten alueen yrityksissä on innovaatiotoimintaa. Kyselyn perusteella oli myös mahdollista saada selville joitain yritysten innovaatioympäristön kannalta tärkeitä tekijöitä. Toisaalta eräät tulokset olivat osittain ristiriitaisia. Tämän vuoksi esimerkiksi alueen yritysten innovaatiokyvykkyyteen on lähitulevaisuudessa kiinnitettävä enemmän huomiota.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for the analysis of high-speed solid-rotor induction motors in presented. The analysis is based on a new combination of the three dimensional linear method and the transfer matrix method. Both saturation and finite length effects are taken into account. The active region of the solid rotor is divided into saturated and unsaturated parts. The time dependence is assumed to be sinusoidal and phasor quantities are used in the solution. The method is applied to the calculation of smooth solid rotors manufactured of different materials. Six rotor materials are tested: three construction steels, pure iron, a cobaltiron alloy and an aluminium alloy. The results obtained by the method agree fairly well with the measurement quantities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Industry's growing need for higher productivity is placing new demands on mechanisms connected with electrical motors, because these can easily lead to vibration problems due to fast dynamics. Furthermore, the nonlinear effects caused by a motor frequently reduce servo stability, which diminishes the controller's ability to predict and maintain speed. Hence, the flexibility of a mechanism and its control has become an important area of research. The basic approach in control system engineering is to assume that the mechanism connected to a motor is rigid, so that vibrations in the tool mechanism, reel, gripper or any apparatus connected to the motor are not taken into account. This might reduce the ability of the machine system to carry out its assignment and shorten the lifetime of the equipment. Nonetheless, it is usually more important to know how the mechanism, or in other words the load on the motor, behaves. A nonlinear load control method for a permanent magnet linear synchronous motor is developed and implemented in the thesis. The purpose of the controller is to track a flexible load to the desired velocity reference as fast as possible and without awkward oscillations. The control method is based on an adaptive backstepping algorithm with its stability ensured by the Lyapunov stability theorem. As a reference controller for the backstepping method, a hybrid neural controller is introduced in which the linear motor itself is controlled by a conventional PI velocity controller and the vibration of the associated flexible mechanism is suppressed from an outer control loop using a compensation signal from a multilayer perceptron network. To avoid the local minimum problem entailed in neural networks, the initial weights are searched for offline by means of a differential evolution algorithm. The states of a mechanical system for controllers are estimated using the Kalman filter. The theoretical results obtained from the control design are validated with the lumped mass model for a mechanism. Generalization of the mechanism allows the methods derived here to be widely implemented in machine automation. The control algorithms are first designed in a specially introduced nonlinear simulation model and then implemented in the physical linear motor using a DSP (Digital Signal Processor) application. The measurements prove that both controllers are capable of suppressing vibration, but that the backstepping method is superior to others due to its accuracy of response and stability properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rotating machine usually consists of a rotor and bearings that supports it. The nonidealities in these components may excite vibration of the rotating system. The uncontrolled vibrations may lead to excessive wearing of the components of the rotating machine or reduce the process quality. Vibrations may be harmful even when amplitudes are seemingly low, as is usually the case in superharmonic vibration that takes place below the first critical speed of the rotating machine. Superharmonic vibration is excited when the rotational velocity of the machine is a fraction of the natural frequency of the system. In such a situation, a part of the machine’s rotational energy is transformed into vibration energy. The amount of vibration energy should be minimised in the design of rotating machines. The superharmonic vibration phenomena can be studied by analysing the coupled rotor-bearing system employing a multibody simulation approach. This research is focused on the modelling of hydrodynamic journal bearings and rotorbearing systems supported by journal bearings. In particular, the non-idealities affecting the rotor-bearing system and their effect on the superharmonic vibration of the rotating system are analysed. A comparison of computationally efficient journal bearing models is carried out in order to validate one model for further development. The selected bearing model is improved in order to take the waviness of the shaft journal into account. The improved model is implemented and analyzed in a multibody simulation code. A rotor-bearing system that consists of a flexible tube roll, two journal bearings and a supporting structure is analysed employing the multibody simulation technique. The modelled non-idealities are the shell thickness variation in the tube roll and the waviness of the shaft journal in the bearing assembly. Both modelled non-idealities may cause subharmonic resonance in the system. In multibody simulation, the coupled effect of the non-idealities can be captured in the analysis. Additionally one non-ideality is presented that does not excite the vibrations itself but affects the response of the rotorbearing system, namely the waviness of the bearing bushing which is the non-rotating part of the bearing system. The modelled system is verified with measurements performed on a test rig. In the measurements the waviness of bearing bushing was not measured and therefore it’s affect on the response was not verified. In conclusion, the selected modelling approach is an appropriate method when analysing the response of the rotor-bearing system. When comparing the simulated results to the measured ones, the overall agreement between the results is concluded to be good.