22 resultados para Light trucks
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Summary
Resumo:
Abstract
Resumo:
Abstract
Resumo:
During the last few years, the discussion on the marginal social costs of transportation has been active. Applying the externalities as a tool to control transport would fulfil the polluter pays principle and simultaneously create a fair control method between the transport modes. This report presents the results of two calculation algorithms developed to estimate the marginal social costs based on the externalities of air pollution. The first algorithm calculates the future scenarios of sea transport traffic externalities until 2015 in the Gulf of Finland. The second algorithm calculates the externalities of Russian passenger car transit traffic via Finland by taking into account both sea and road transport. The algorithm estimates the ship-originated emissions of carbon dioxide (CO2), nitrogen oxides (NOx), sulphur oxides (SOx), particulates (PM) and the externalities for each year from 2007 to 2015. The total NOx emissions in the Gulf of Finland from the six ship types were almost 75.7 kilotons (Table 5.2) in 2007. The ship types are: passenger (including cruisers and ROPAX vessels), tanker, general cargo, Ro-Ro, container and bulk vessels. Due to the increase of traffic, the estimation for NOx emissions for 2015 is 112 kilotons. The NOx emission estimation for the whole Baltic Sea shipping is 370 kilotons in 2006 (Stipa & al, 2007). The total marginal social costs due to ship-originated CO2, NOx, SOx and PM emissions in the GOF were calculated to almost 175 million Euros in 2007. The costs will increase to nearly 214 million Euros in 2015 due to the traffic growth. The major part of the externalities is due to CO2 emissions. If we neglect the CO2 emissions by extracting the CO2 externalities from the results, we get the total externalities of 57 million Euros in 2007. After eight years (2015), the externalities would be 28 % lower, 41 million Euros (Table 8.1). This is the result of the sulphur emissions reducing regulation of marine fuels. The majority of the new car transit goes through Finland to Russia due to the lack of port capacity in Russia. The amount of cars was 339 620 vehicles (Statistics of Finnish Customs 2008) in 2005. The externalities are calculated for the transportation of passenger vehicles as follows: by ship to a Finnish port and, after that, by trucks to the Russian border checkpoint. The externalities are between 2 – 3 million Euros (year 2000 cost level) for each route. The ports included in the calculations are Hamina, Hanko, Kotka and Turku. With the Euro-3 standard trucks, the port of Hanko would be the best choice to transport the vehicles. This is because of lower emissions by new trucks and the saved transport distance of a ship. If the trucks are more polluting Euro 1 level trucks, the port of Kotka would be the best choice. This indicates that the truck emissions have a considerable effect on the externalities and that the transportation of light cargo, such as passenger cars by ship, produces considerably high emission externalities. The emission externalities approach offers a new insight for valuing the multiple traffic modes. However, the calculation of the marginal social costs based on the air emission externalities should not be regarded as a ready-made calculation system. The system is clearly in the need of some improvement but it can already be considered as a potential tool for political decision making.
Resumo:
The aim of the present study was to demonstrate the wide applicability of the novel photoluminescent labels called upconverting phosphors (UCPs) in proximity-based bioanalytical assays. The exceptional features of the lanthanide-doped inorganic UCP compounds stem from their capability for photon upconversion resulting in anti-Stokes photoluminescence at visible wavelengths under near-infrared (NIR) excitation. Major limitations related to conventional photoluminescent labels are avoided, rendering the UCPs a competitive next-generation label technology. First, the background luminescence is minimized due to total elimination of autofluorescence. Consequently, improvements in detectability are expected. Second, at the long wavelengths (>600 nm) used for exciting and detecting the UCPs, the transmittance of sample matrixes is significantly greater in comparison with shorter wavelengths. Colored samples are no longer an obstacle to the luminescence measurement, and more flexibility is allowed even in homogeneous assay concepts, where the sample matrix remains present during the entire analysis procedure, including label detection. To transform a UCP particle into a biocompatible label suitable for bioanalytical assays, it must be colloidal in an aqueous environment and covered with biomolecules capable of recognizing the analyte molecule. At the beginning of this study, only UCP bulk material was available, and it was necessary to process the material to submicrometer-sized particles prior to use. Later, the ground UCPs, with irregular shape, wide size-distribution and heterogeneous luminescence properties, were substituted by a smaller-sized spherical UCP material. The surface functionalization of the UCPs was realized by producing a thin hydrophilic coating. Polymer adsorption on the UCP surface is a simple way to introduce functional groups for bioconjugation purposes, but possible stability issues encouraged us to optimize an optional silica-encapsulation method which produces a coating that is not detached in storage or assay conditions. An extremely thin monolayer around the UCPs was pursued due to their intended use as short-distance energy donors, and much attention was paid to controlling the thickness of the coating. The performance of the UCP technology was evaluated in three different homogeneous resonance energy transfer-based bioanalytical assays: a competitive ligand binding assay, a hybridization assay for nucleic acid detection and an enzyme activity assay. To complete the list, a competitive immunoassay has been published previously. Our systematic investigation showed that a nonradiative energy transfer mechanism is indeed involved, when a UCP and an acceptor fluorophore are brought into close proximity in aqueous suspension. This process is the basis for the above-mentioned homogeneous assays, in which the distance between the fluorescent species depends on a specific biomolecular binding event. According to the studies, the submicrometer-sized UCP labels allow versatile proximity-based bioanalysis with low detection limits (a low-nanomolar concentration for biotin, 0.01 U for benzonase enzyme, 0.35 nM for target DNA sequence).
Resumo:
The aim of this thesis was to identify the best grease removal technique with the application of low power of UV light to TiO2 coated grease filters. The treatment with various power series of ozone generating and ozone free lamps to normal grease filters and TiO2 coated grease filters were examined and the obtained results are compared to each other in this paper. The effect of ozone reaction was observed and compared with the effect of TiO2. The experiments were solely based on the photo oxidation and photo catalytic oxidation reactions. TiO2 is a green catalyst used in the photocatalytic reaction. Sunflower oil was used for grease production and tetracholoroethylene as a solvent. Grease samples were collected from the ventilation duct connected to the cooking hood system. Sample extraction was done in ultrasonic bath with the principle of sonication. The sample analysis was done by FTIR machine. The result determining the concentration of grease was the quantification of saturated C-H bonds in the chosen peak group of the spectrum. A very low power of UVC light functions perfectly with the Titanium dioxide. The experimental results have shown the combined treatment of titanium dioxide and UV light is an effective method in grease removal process. The photocatalytic reaction with titanium dioxide is better than photo oxidation reaction with ozone treatment. Photocatalytic reaction is environmentally friendly, energy efficient and economical.
Resumo:
Kansalliskirjaston ONKI-projektin ylläpitämä Finto-palvelu käyttää projektissa kehitettävää Skosmos-ohjelmaa (entinen ONKI Light). Skosmos on työkalu kontrolloitujen sanastojen, kuten asiasanastojen ja asiasanastotyyppisesti käytettävien ontologioiden julkaisuun. Työkalu tarjoaa selailu- ja hakukäyttöliittymän sanastoille sekä avoimet rajapinnat koneellista käyttöä varten. Käyttöliittymä on monikielinen sisältäen tällä hetkellä suomen-, ruotsin- sekä englanninkieliset käyttöliittymäversiot.
Skosmoksen edeltäjälle ONKI Lightille on tehty ONKI-projektissa jo aikaisempi käytettävyystesti, jonka raportti on luettavissa Doriassa.
Käytettävyystestien perusteella vaikuttaisi siltä, että ontologian selaamiseen asiasanoituksessa vaikuttaisi ainakin käyttäjän käyttämä järjestelmä, asiasanoitukseen käytettävä aika, asiasanoitustottumukset ja -kokemus sekä sanaston tuttuus. Jos aikaa ei ole juurikaan varattu asiasanoitukselle, ei käsitteitä juurikaan selailla, vaikka muuten tuki ontologioiden hyödyntämiselle olisi olemassa. Myöskään sanastoa ei juurikaan selailla, mikäli aihe ja sanasto ovat tuttuja, jolloin asiasanojen merkitykset ovat etukäteen tiedossa.