14 resultados para Lidar

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines the use of di erent features derived from remotely sensed data in segmentation of forest stands. Surface interpolation methods were applied to LiDAR points in order to represent data in the form of grayscale images. Median and mean shift ltering was applied to the data for noise reduction. The ability of di erent compositions of rasters obtained from LiDAR data and an aerial image to maximize stand homogeneity in the segmentation was evaluated. The quality of forest stand delineations was assessed by the Akaike information criterion. The research was performed in co-operation with Arbonaut Ltd., Joensuu, Finland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to reduce greenhouse emissions from forest degradation and deforestation the international programme REDD (Reducing Emissions from Deforestation and forest Degradation) was established in 2005 by the United Nations Framework Convention on Climate Change (UNFCCC). This programme is aimed to financially reward to developing countries for any emissions reductions. Under this programm the project of setting up the payment system in Nepal was established. This project is aimed to engage local communities in forest monitoring. The major objective of this thesis is to compare and verify data obtained from di erect sources - remotely sensed data, namely LiDAR and field sample measurements made by two groups of researchers using two regression models - Sparse Bayesian Regression and Bayesian Regression with Orthogonal Variables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LiDAR is an advanced remote sensing technology with many applications, including forest inventory. The most common type is ALS (airborne laser scanning). The method is successfully utilized in many developed markets, where it is replacing traditional forest inventory methods. However, it is innovative for Russian market, where traditional field inventory dominates. ArboLiDAR is a forest inventory solution that engages LiDAR, color infrared imagery, GPS ground control plots and field sample plots, developed by Arbonaut Ltd. This study is an industrial market research for LiDAR technology in Russia focused on customer needs. Russian forestry market is very attractive, because of large growing stock volumes. It underwent drastic changes in 2006, but it is still in transitional stage. There are several types of forest inventory, both with public and private funding. Private forestry enterprises basically need forest inventory in two cases – while making coupe demarcation before timber harvesting and as a part of forest management planning, that is supposed to be done every ten years on the whole leased territory. The study covered 14 companies in total that include private forestry companies with timber harvesting activities, private forest inventory providers, state subordinate companies and forestry software developer. The research strategy is multiple case studies with semi-structured interviews as the main data collection technique. The study focuses on North-West Russia, as it is the most developed Russian region in forestry. The research applies the Voice of the Customer (VOC) concept to elicit customer needs of Russian forestry actors and discovers how these needs are met. It studies forest inventory methods currently applied in Russia and proposes the model of method comparison, based on Multi-criteria decision making (MCDM) approach, mainly on Analytical Hierarchy Process (AHP). Required product attributes are classified in accordance with Kano model. The answer about suitability of LiDAR technology is ambiguous, since many details should be taken into account.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Referat av artikeln: Korpela, I., Tuomola, T., Tokola, T. & Dahlin, B. 2008. Appraisal of seedling stand vegetation with airborne imagery and discrete-return LiDAR - an exploratory analysis. Silva Fennica 42 (5) : 753-772.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seloste artikkelista: Korpela, I., Ørka, H. O., Maltamo, M., Tokola, T. & Hyyppä, J. / Tree species classification using airborne LiDAR - effects of stand and tree parameters, downsizing of training set, intensity normalization, and sensor type. Silva Fennica 44 (2010) : 2, 319-339.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acid sulfate (a.s.) soils constitute a major environmental issue. Severe ecological damage results from the considerable amounts of acidity and metals leached by these soils in the recipient watercourses. As even small hot spots may affect large areas of coastal waters, mapping represents a fundamental step in the management and mitigation of a.s. soil environmental risks (i.e. to target strategic areas). Traditional mapping in the field is time-consuming and therefore expensive. Additional more cost-effective techniques have, thus, to be developed in order to narrow down and define in detail the areas of interest. The primary aim of this thesis was to assess different spatial modeling techniques for a.s. soil mapping, and the characterization of soil properties relevant for a.s. soil environmental risk management, using all available data: soil and water samples, as well as datalayers (e.g. geological and geophysical). Different spatial modeling techniques were applied at catchment or regional scale. Two artificial neural networks were assessed on the Sirppujoki River catchment (c. 440 km2) located in southwestern Finland, while fuzzy logic was assessed on several areas along the Finnish coast. Quaternary geology, aerogeophysics and slope data (derived from a digital elevation model) were utilized as evidential datalayers. The methods also required the use of point datasets (i.e. soil profiles corresponding to known a.s. or non-a.s. soil occurrences) for training and/or validation within the modeling processes. Applying these methods, various maps were generated: probability maps for a.s. soil occurrence, as well as predictive maps for different soil properties (sulfur content, organic matter content and critical sulfide depth). The two assessed artificial neural networks (ANNs) demonstrated good classification abilities for a.s. soil probability mapping at catchment scale. Slightly better results were achieved using a Radial Basis Function (RBF) -based ANN than a Radial Basis Functional Link Net (RBFLN) method, narrowing down more accurately the most probable areas for a.s. soil occurrence and defining more properly the least probable areas. The RBF-based ANN also demonstrated promising results for the characterization of different soil properties in the most probable a.s. soil areas at catchment scale. Since a.s. soil areas constitute highly productive lands for agricultural purpose, the combination of a probability map with more specific soil property predictive maps offers a valuable toolset to more precisely target strategic areas for subsequent environmental risk management. Notably, the use of laser scanning (i.e. Light Detection And Ranging, LiDAR) data enabled a more precise definition of a.s. soil probability areas, as well as the soil property modeling classes for sulfur content and the critical sulfide depth. Given suitable training/validation points, ANNs can be trained to yield a more precise modeling of the occurrence of a.s. soils and their properties. By contrast, fuzzy logic represents a simple, fast and objective alternative to carry out preliminary surveys, at catchment or regional scale, in areas offering a limited amount of data. This method enables delimiting and prioritizing the most probable areas for a.s soil occurrence, which can be particularly useful in the field. Being easily transferable from area to area, fuzzy logic modeling can be carried out at regional scale. Mapping at this scale would be extremely time-consuming through manual assessment. The use of spatial modeling techniques enables the creation of valid and comparable maps, which represents an important development within the a.s. soil mapping process. The a.s. soil mapping was also assessed using water chemistry data for 24 different catchments along the Finnish coast (in all, covering c. 21,300 km2) which were mapped with different methods (i.e. conventional mapping, fuzzy logic and an artificial neural network). Two a.s. soil related indicators measured in the river water (sulfate content and sulfate/chloride ratio) were compared to the extent of the most probable areas for a.s. soils in the surveyed catchments. High sulfate contents and sulfate/chloride ratios measured in most of the rivers demonstrated the presence of a.s. soils in the corresponding catchments. The calculated extent of the most probable a.s. soil areas is supported by independent data on water chemistry, suggesting that the a.s. soil probability maps created with different methods are reliable and comparable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis applies the customer value hierarchy model to forestry in order to determine strategic options to enhance the value of LiDAR technology in Russian forestry. The study is conducted as a qualitative case study with semi-structured interviews as a main source of the primary data. The customer value hierarchy model constitutes a theoretical base for the research. Secondary data incorporates information on forest resource management, LiDAR technology and Russian forestry. The model is operationalised using forestry literature and forms a basis for analyses of primary data. Analyses of primary data coupled with comprehension of Russian forest inventory system and knowledge on global forest inventory have led to conclusions on the forest inventory methods selection criteria and the organizations that would benefit the most from LiDAR technology use. The thesis recommends strategic options for LiDAR technology’s value enhancement in Russian forestry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research report applies the customer value hierarchy model to forestry in order to determine strategic options to enhance the value of LiDAR technology in Russian forestry. The study is conducted as a qualitative case study with semi-structured interviews as a main source of the primary data. The customer value hierarchy model constitutes a theoretical base for the research. Secondary data incorporates information on forest resource management, LiDAR technology and Russian forestry. The model is operationalised using forestry literature and forms a basis for analyses of primary data. Analyses of primary data coupled with comprehension of Russian forest inventory system and knowledge on global forest inventory have led to conclusions on the forest inventory methods selection criteria and the organizations that would benefit the most from LiDAR technology use. The report recommends strategic options for LiDAR technology’s value enhancement in Russian forestry. This work has been conducted as a part of the project ‘Finnish-Russian Forest Academy 2 - Exploiting and Piloting’, which has been supported financially by the South-East Finland- Russia ENPI CBC 2007-2014 Programme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most of the applications of airborne laser scanner data to forestry require that the point cloud be normalized, i.e., each point represents height from the ground instead of elevation. To normalize the point cloud, a digital terrain model (DTM), which is derived from the ground returns in the point cloud, is employed. Unfortunately, extracting accurate DTMs from airborne laser scanner data is a challenging task, especially in tropical forests where the canopy is normally very thick (partially closed), leading to a situation in which only a limited number of laser pulses reach the ground. Therefore, robust algorithms for extracting accurate DTMs in low-ground-point-densitysituations are needed in order to realize the full potential of airborne laser scanner data to forestry. The objective of this thesis is to develop algorithms for processing airborne laser scanner data in order to: (1) extract DTMs in demanding forest conditions (complex terrain and low number of ground points) for applications in forestry; (2) estimate canopy base height (CBH) for forest fire behavior modeling; and (3) assess the robustness of LiDAR-based high-resolution biomass estimation models against different field plot designs. Here, the aim is to find out if field plot data gathered by professional foresters can be combined with field plot data gathered by professionally trained community foresters and used in LiDAR-based high-resolution biomass estimation modeling without affecting prediction performance. The question of interest in this case is whether or not the local forest communities can achieve the level technical proficiency required for accurate forest monitoring. The algorithms for extracting DTMs from LiDAR point clouds presented in this thesis address the challenges of extracting DTMs in low-ground-point situations and in complex terrain while the algorithm for CBH estimation addresses the challenge of variations in the distribution of points in the LiDAR point cloud caused by things like variations in tree species and season of data acquisition. These algorithms are adaptive (with respect to point cloud characteristics) and exhibit a high degree of tolerance to variations in the density and distribution of points in the LiDAR point cloud. Results of comparison with existing DTM extraction algorithms showed that DTM extraction algorithms proposed in this thesis performed better with respect to accuracy of estimating tree heights from airborne laser scanner data. On the other hand, the proposed DTM extraction algorithms, being mostly based on trend surface interpolation, can not retain small artifacts in the terrain (e.g., bumps, small hills and depressions). Therefore, the DTMs generated by these algorithms are only suitable for forestry applications where the primary objective is to estimate tree heights from normalized airborne laser scanner data. On the other hand, the algorithm for estimating CBH proposed in this thesis is based on the idea of moving voxel in which gaps (openings in the canopy) which act as fuel breaks are located and their height is estimated. Test results showed a slight improvement in CBH estimation accuracy over existing CBH estimation methods which are based on height percentiles in the airborne laser scanner data. However, being based on the idea of moving voxel, this algorithm has one main advantage over existing CBH estimation methods in the context of forest fire modeling: it has great potential in providing information about vertical fuel continuity. This information can be used to create vertical fuel continuity maps which can provide more realistic information on the risk of crown fires compared to CBH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wind power is a rapidly developing, low-emission form of energy production. In Fin-land, the official objective is to increase wind power capacity from the current 1 005 MW up to 3 500–4 000 MW by 2025. By the end of April 2015, the total capacity of all wind power project being planned in Finland had surpassed 11 000 MW. As the amount of projects in Finland is record high, an increasing amount of infrastructure is also being planned and constructed. Traditionally, these planning operations are conducted using manual and labor-intensive work methods that are prone to subjectivity. This study introduces a GIS-based methodology for determining optimal paths to sup-port the planning of onshore wind park infrastructure alignment in Nordanå-Lövböle wind park located on the island of Kemiönsaari in Southwest Finland. The presented methodology utilizes a least-cost path (LCP) algorithm for searching of optimal paths within a high resolution real-world terrain dataset derived from airborne lidar scannings. In addition, planning data is used to provide a realistic planning framework for the anal-ysis. In order to produce realistic results, the physiographic and planning datasets are standardized and weighted according to qualitative suitability assessments by utilizing methods and practices offered by multi-criteria evaluation (MCE). The results are pre-sented as scenarios to correspond various different planning objectives. Finally, the methodology is documented by using tools of Business Process Management (BPM). The results show that the presented methodology can be effectively used to search and identify extensive, 20 to 35 kilometers long networks of paths that correspond to certain optimization objectives in the study area. The utilization of high-resolution terrain data produces a more objective and more detailed path alignment plan. This study demon-strates that the presented methodology can be practically applied to support a wind power infrastructure alignment planning process. The six-phase structure of the method-ology allows straightforward incorporation of different optimization objectives. The methodology responds well to combining quantitative and qualitative data. Additional-ly, the careful documentation presents an example of how the methodology can be eval-uated and developed as a business process. This thesis also shows that more emphasis on the research of algorithm-based, more objective methods for the planning of infrastruc-ture alignment is desirable, as technological development has only recently started to realize the potential of these computational methods.