27 resultados para Learning method

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Kokemusperäinen tieto on käytäntöihin sitoutunutta ja siirtyy pitkälti vuorovaikutuksen kautta. Organisaation toiminnalle keskeisenä osatekijänä sen jakamisen tulee olla suunnitelmallista. Tämä tutkimus keskittyy tarkastelemaan kokemusperäisen tiedon jakamista työkierron avulla. Työkierto osaamisen kehittämisen menetelmänä on laajalti organisaatioiden käyttämä, mutta sen tutkiminen kokemusperäisen tiedon osalta on ollut vähäistä. Tutkimuksen teoriaosuus tarkastelee tiedon jakamista ja omaksumista yksilön ja organisaation tasoilla hyödyntäen tietoperustaisen näkemyksen ja organisaation oppimisen teorioita, joiden kautta tutkimuksen viitekehys muotoutui. Tutkimuksen empiriaosuus toteutettiin kvalitatiivisina teemahaastatteluina, joissa haastateltiin kuutta työkierron mentori-oppija –paria. Tutkimuksen tulokset osoittivat työkierron olevan toimiva keino siirtää kokemusperäistä tietoa, johon merkittävimpinä keinoina vaikuttivat vuorovaikutuksellinen yhdessä työskenteleminen, sekä toiminnan organisoinnin suunnitelmallisuus. Tutkimuksen johtopäätöksenä esitettiin yhdenmukaisen työkierron suunnitelman rakentamista, sekä työkierron toteutumisen sitouttamista osaksi työn arviointia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Through advances in technology, System-on-Chip design is moving towards integrating tens to hundreds of intellectual property blocks into a single chip. In such a many-core system, on-chip communication becomes a performance bottleneck for high performance designs. Network-on-Chip (NoC) has emerged as a viable solution for the communication challenges in highly complex chips. The NoC architecture paradigm, based on a modular packet-switched mechanism, can address many of the on-chip communication challenges such as wiring complexity, communication latency, and bandwidth. Furthermore, the combined benefits of 3D IC and NoC schemes provide the possibility of designing a high performance system in a limited chip area. The major advantages of 3D NoCs are the considerable reductions in average latency and power consumption. There are several factors degrading the performance of NoCs. In this thesis, we investigate three main performance-limiting factors: network congestion, faults, and the lack of efficient multicast support. We address these issues by the means of routing algorithms. Congestion of data packets may lead to increased network latency and power consumption. Thus, we propose three different approaches for alleviating such congestion in the network. The first approach is based on measuring the congestion information in different regions of the network, distributing the information over the network, and utilizing this information when making a routing decision. The second approach employs a learning method to dynamically find the less congested routes according to the underlying traffic. The third approach is based on a fuzzy-logic technique to perform better routing decisions when traffic information of different routes is available. Faults affect performance significantly, as then packets should take longer paths in order to be routed around the faults, which in turn increases congestion around the faulty regions. We propose four methods to tolerate faults at the link and switch level by using only the shortest paths as long as such path exists. The unique characteristic among these methods is the toleration of faults while also maintaining the performance of NoCs. To the best of our knowledge, these algorithms are the first approaches to bypassing faults prior to reaching them while avoiding unnecessary misrouting of packets. Current implementations of multicast communication result in a significant performance loss for unicast traffic. This is due to the fact that the routing rules of multicast packets limit the adaptivity of unicast packets. We present an approach in which both unicast and multicast packets can be efficiently routed within the network. While suggesting a more efficient multicast support, the proposed approach does not affect the performance of unicast routing at all. In addition, in order to reduce the overall path length of multicast packets, we present several partitioning methods along with their analytical models for latency measurement. This approach is discussed in the context of 3D mesh networks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Object detection is a fundamental task of computer vision that is utilized as a core part in a number of industrial and scientific applications, for example, in robotics, where objects need to be correctly detected and localized prior to being grasped and manipulated. Existing object detectors vary in (i) the amount of supervision they need for training, (ii) the type of a learning method adopted (generative or discriminative) and (iii) the amount of spatial information used in the object model (model-free, using no spatial information in the object model, or model-based, with the explicit spatial model of an object). Although some existing methods report good performance in the detection of certain objects, the results tend to be application specific and no universal method has been found that clearly outperforms all others in all areas. This work proposes a novel generative part-based object detector. The generative learning procedure of the developed method allows learning from positive examples only. The detector is based on finding semantically meaningful parts of the object (i.e. a part detector) that can provide additional information to object location, for example, pose. The object class model, i.e. the appearance of the object parts and their spatial variance, constellation, is explicitly modelled in a fully probabilistic manner. The appearance is based on bio-inspired complex-valued Gabor features that are transformed to part probabilities by an unsupervised Gaussian Mixture Model (GMM). The proposed novel randomized GMM enables learning from only a few training examples. The probabilistic spatial model of the part configurations is constructed with a mixture of 2D Gaussians. The appearance of the parts of the object is learned in an object canonical space that removes geometric variations from the part appearance model. Robustness to pose variations is achieved by object pose quantization, which is more efficient than previously used scale and orientation shifts in the Gabor feature space. Performance of the resulting generative object detector is characterized by high recall with low precision, i.e. the generative detector produces large number of false positive detections. Thus a discriminative classifier is used to prune false positive candidate detections produced by the generative detector improving its precision while keeping high recall. Using only a small number of positive examples, the developed object detector performs comparably to state-of-the-art discriminative methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ohjelmoinnin opettaminen yleissivistävänä oppiaineena on viime aikoina herättänyt kiinnostusta Suomessa ja muualla maailmassa. Esimerkiksi Suomen opetushallituksen määrittämien, vuonna 2016 käyttöön otettavien peruskoulun opintosuunnitelman perusteiden mukaan, ohjelmointitaitoja aletaan opettaa suomalaisissa peruskouluissa ensimmäiseltä luokalta alkaen. Ohjelmointia ei olla lisäämässä omaksi oppiaineekseen, vaan sen opetuksen on tarkoitus tapahtua muiden oppiaineiden, kuten matematiikan yhteydessä. Tämä tutkimus käsittelee yleissivistävää ohjelmoinnin opetusta yleisesti, käy läpi yleisimpiä haasteita ohjelmoinnin oppimisessa ja tarkastelee erilaisten opetusmenetelmien soveltuvuutta erityisesti nuorten oppilaiden opettamiseen. Tutkimusta varten toteutettiin verkkoympäristössä toimiva, noin 9–12-vuotiaille oppilaille suunnattu graafista ohjelmointikieltä ja visuaalisuutta tehokkaasti hyödyntävä oppimissovellus. Oppimissovelluksen avulla toteutettiin alakoulun neljänsien luokkien kanssa vertailututkimus, jossa graafisella ohjelmointikielellä tapahtuvan opetuksen toimivuutta vertailtiin toiseen opetusmenetelmään, jossa oppilaat tutustuivat ohjelmoinnin perusteisiin toiminnallisten leikkien avulla. Vertailututkimuksessa kahden neljännen luokan oppilaat suorittivat samankaltaisia, ohjelmoinnin peruskäsitteisiin liittyviä ohjelmointitehtäviä molemmilla opetus-menetelmillä. Tutkimuksen tavoitteena oli selvittää alakouluoppilaiden nykyistä ohjelmointiosaamista, sitä minkälaisen vastaanoton ohjelmoinnin opetus alakouluoppilailta saa, onko erilaisilla opetusmenetelmillä merkitystä opetuksen toteutuksen kannalta ja näkyykö eri opetusmenetelmillä opetettujen luokkien oppimistuloksissa eroja. Oppilaat suhtautuivat kumpaankin opetusmenetelmään myönteisesti, ja osoittivat kiinnostusta ohjelmoinnin opiskeluun. Sisällöllisesti oppitunneille oli varattu turhan paljon materiaalia, mutta esimerkiksi yhden keskeisimmän aiheen, eli toiston käsitteen oppimisessa aktiivisilla leikeillä harjoitellut luokka osoitti huomattavasti graafisella ohjelmointikielellä harjoitellutta luokkaa parempaa osaamista oppitunnin jälkeen. Ohjelmakoodin peräkkäisyyteen liittyvä osaaminen oli neljäsluokkalaisilla hyvin hallussa jo ennen ohjelmointiharjoituksia. Aiheeseen liittyvän taustatutkimuksen ja luokkien opettajien haastatteluiden perusteella havaittiin koulujen valmiuksien opetussuunnitelmauudistuksen mukaiseen ohjelmoinnin opettamiseen olevan vielä heikolla tasolla.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tämä diplomityö tarkastelee pelaajatyyppien ja pelaajamotivaatioiden tunnistamista videopeleissä. Aiempi tutkimus tuntee monia pelaajatyyppien malleja, mutta niitä ei ole liiemmin sovellettu käytäntöön peleissä. Tässä työssä suoritetaan systemaattinen kirjallisuuskartoitus erilaisista pelaajatyyppien malleista, jonka pohjalta esitetään useita pelaajien luokittelutapoja. Lisäksi toteutetaan tapaustutkimus, jossa kirjallisuuden pohjalta valitaan pelaajien luokittelumalli ja testataan mallia käytännössä tunnistamalla pelaajatyyppejä data-analytiikan avulla reaaliaikaisessa strategiapelissä.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study attempts to answer the question “Should translation be considered a fifth language skill?” by examining and comparing the use of translation as a language learning and assessment method in the national Finnish lukio curriculum and the curriculum of the International Baccalaureate Diploma Programme (IBDP). Furthermore, the students’ ability to translate and their opinions on the usefulness of translation in language learning will be examined. The students’ opinions were gathered through a questionnaire that was given to 156 students studying in either lukio or the IBDP in Turku and Rovaniemi. I present and compare the role of translation in selected language teaching and learning methods and approaches, and discuss the effectiveness of translation as a language learning method and an assessment method. The theoretical discussion provides the basis for examining the role of translation as a language learning method and an assessment method in the curricula and final examinations of both education programs. The analysis of the two curricula indicated that there is a significant difference in the use of translation, as translation is used as a language learning method and as an assessment method in lukio, but is not used in either form in the IB. The data obtained through the questionnaire indicated that there is a difference in the level of language competence between the lukio and IB students and suggested that the curriculum in which the student studies has some effect on his/her cognitive use of translation, ability to translate and opinions concerning the usefulness of translation in language learning. The results indicated that both groups of students used translation, along with their mother tongue, as a cognitive language learning method, and, contrary to the expectations set by the analysis of the two curricula, the IB students performed better in the translation exercises than lukio students. Both groups of students agreed that translation is a useful language learning method, and indicated that the most common dictionaries they use are bilingual Internet dictionaries. The results suggest that translation is a specific skill that requires teaching and practice, and that perhaps the translation exercises used in lukio should be developed from translating individual words and phrases to translating cultural elements. In addition, the results suggest that perhaps the IB curriculum should include the use of translation exercises (e.g., communicative translation exercises) in order to help students learn to mediate between languages and cultures rather than learn languages in isolation from each other.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tutkielman tavoite on tutkia kulttuurista, funktionaalista ja arvojen diversiteettiä, niiden suhdetta innovatiivisuuteen ja oppimiseen sekä tarjota keinoja diversiteetin johtamiseen. Tämän lisäksi selvitetään linjaesimiesten haastattelujen kautta miten diversiteetti case -organisaatiossa tällä hetkellä koetaan. Organisaation diversiteetin tämänhetkisen tilan tunnistamisen kautta voidaan esittää parannusehdotuksia diversiteetin hallintaan. Tutkimus- ja tiedonkeruumenetelmänä käytetään kvalitatiivista focus group haastattelumenetelmää. Tutkimuksessa saatiin selkeä kuva kulttuurisen, funktionaalisen ja arvojen diversiteetin merkityksistä organisaation innovatiivisuudelle ja oppimiselle sekä löydettiin keinoja näiden diversiteetin tyyppien johtamiseen. Tutkimuksen tärkeä löydös on se, että diversiteetti vaikuttaa positiivisesti organisaation innovatiivisuuteen kun sitä johdetaan tehokkaasti ja kun organisaatioympäristö tukee avointa keskustelua ja mielipiteiden jakamista. Case organisaation tämänhetkistä diversiteetin tilaa selvitettäessä havaittiin että ongelma organisaatiossa ei ole diversiteetin puute, vaan paremminkin se, ettei diversiteettia osata hyödyntää. Organisaatio ei tue erilaisten näkemysten ja mielipiteiden vapaata esittämistä jahyväksikäyttöä ja siksi diversiteetin hyödyntäminen on epätäydellistä. Haastatteluissa tärkeinä seikkoina diversiteetin hyödyntämisen parantamisessa nähtiin kulttuurin muuttaminen avoimempaan suuntaan ja johtajien esimiestaitojen parantaminen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main subject of this master's thesis was predicting diffusion of innovations. The prediction was done in a special case: product has been available in some countries, and based on its diffusion in those countries the prediction is done for other countries. The prediction was based on finding similar countries with Self-Organizing Map~(SOM), using parameters of countries. Parameters included various economical and social key figures. SOM was optimised for different products using two different methods: (a) by adding diffusion information of products to the country parameters, and (b) by weighting the country parameters based on their importance for the diffusion of different products. A novel method using Differential Evolution (DE) was developed to solve the latter, highly non-linear optimisation problem. Results were fairly good. The prediction method seems to be on a solid theoretical foundation. The results based on country data were good. Instead, optimisation for different products did not generally offer clear benefit, but in some cases the improvement was clearly noticeable. The weights found for the parameters of the countries with the developed SOM optimisation method were interesting, and most of them could be explained by properties of the products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluent health information flow is critical for clinical decision-making. However, a considerable part of this information is free-form text and inabilities to utilize it create risks to patient safety and cost-­effective hospital administration. Methods for automated processing of clinical text are emerging. The aim in this doctoral dissertation is to study machine learning and clinical text in order to support health information flow.First, by analyzing the content of authentic patient records, the aim is to specify clinical needs in order to guide the development of machine learning applications.The contributions are a model of the ideal information flow,a model of the problems and challenges in reality, and a road map for the technology development. Second, by developing applications for practical cases,the aim is to concretize ways to support health information flow. Altogether five machine learning applications for three practical cases are described: The first two applications are binary classification and regression related to the practical case of topic labeling and relevance ranking.The third and fourth application are supervised and unsupervised multi-class classification for the practical case of topic segmentation and labeling.These four applications are tested with Finnish intensive care patient records.The fifth application is multi-label classification for the practical task of diagnosis coding. It is tested with English radiology reports.The performance of all these applications is promising. Third, the aim is to study how the quality of machine learning applications can be reliably evaluated.The associations between performance evaluation measures and methods are addressed,and a new hold-out method is introduced.This method contributes not only to processing time but also to the evaluation diversity and quality. The main conclusion is that developing machine learning applications for text requires interdisciplinary, international collaboration. Practical cases are very different, and hence the development must begin from genuine user needs and domain expertise. The technological expertise must cover linguistics,machine learning, and information systems. Finally, the methods must be evaluated both statistically and through authentic user-feedback.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The focus of this Master’s Thesis is on knowledge sharing in a virtual Learning community. The theoretical part of this study aims at presenting the theory of knowledge sharing, competence development and learning in virtual teams. The features of successful learning organizations as well as enablers of effective knowledge sharing in virtual communities are also introduced to the reader in the theoretical framework. The empirical research for this study was realized in a global ICT company, specifically in its Human Resources business unit. The research consisted of two rounds of online questionnaires, which were conducted among all the members of the virtual Learning community. The research aim was to find shared opinions concerning the features of a successful virtual Learning community. The analysis of the data in this study was conducted using a qualitative research methodology. The empirical research showed that the main important features of a successful virtual Learning community are members’ passion towards the community way of working as well as the relevance of the content in the virtual community. In general, it was found that knowledge sharing and competence development are important matters in dynamic organizations as well as virtual communities as method and tool for sharing knowledge and hence increasing both individual and organizational knowledge. This is proved by theoretical and by empirical research in this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Engelskans dominerande roll som internationellt språk och andra globaliseringstrender påverkar också Svenskfinland. Dessa trender påverkar i sin tur förutsättningarna för lärande och undervisning i engelska som främmande språk, det vill säga undervisningsmålen, de förväntade elev- och lärarroller, materialens ändamålsenlighet, lärares och elevers initiala erfarenheter av engelska och engelskspråkiga länder. Denna studie undersöker förutsättningarna för lärande och professionell utveckling i det svenskspråkiga nybörjarklassrummet i engelska som främmande språk. Utgångsläget för 351 nybörjare i engelska som främmande språk och 19 av deras lärare beskrivs och analyseras. Resultaten tyder på att engelska håller på att bli ett andraspråk snarare än ett traditionellt främmande språk för många unga elever. Dessa elever har också goda förutsättningar att lära sig engelska utanför skolan. Sådan var dock inte situationen för alla elever, vilket tyder på att det finns en anmärkningsvärd heterogenitet och även regional variation i det finlandssvenska klassrummet i engelska som främmande språk. Lärarresultaten tyder på att vissa lärare har klarat av att på ett konstruktivt sätt att tackla de förutsättningar de möter. Andra lärare uttrycker frustration över sin arbetssituation, läroplanen, undervisningsmaterialen och andra aktörer som kommer är av betydelse för skolmiljön. Studien påvisar att förutsättningarna för lärande och undervisning i engelska som främmande språk varierar i Svenskfinland. För att stöda elevers och lärares utveckling föreslås att dialogen mellan aktörer på olika nivå i samhället bör förbättras och systematiseras.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the fierce competition of today‟s business world an organization‟s capacity to learn maybe its only competitive advantage. This research aims at increasing the understanding on how organizational learning from the customer happens in technology companies. In doing so it provides a synthesized definition of organizational learning and investigates processes of organizational learning within technology companies. A qualitative research method and in-depth interviews with different sized high technology companies, as applied here, enables in-depth study of the learning processes. Research contributes to the understanding of what type of knowledge firms acquire, how new knowledge is transferred and used in a learning firm‟s routines and processes. Research findings show that SMEs and large size companies also, depending on their position in the software value chain, consider different knowledge types as most important and that they use different learning methods to acquire knowledge from their customers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditionally simulators have been used extensively in robotics to develop robotic systems without the need to build expensive hardware. However, simulators can be also be used as a “memory”for a robot. This allows the robot to try out actions in simulation before executing them for real. The key obstacle to this approach is an uncertainty of knowledge about the environment. The goal of the Master’s Thesis work was to develop a method, which allows updating the simulation model based on actual measurements to achieve a success of the planned task. OpenRAVE was chosen as an experimental simulation environment on planning,trial and update stages. Steepest Descent algorithm in conjunction with Golden Section search procedure form the principle part of optimization process. During experiments, the properties of the proposed method, such as sensitivity to different parameters, including gradient and error function, were examined. The limitations of the approach were established, based on analyzing the regions of convergence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Machine learning provides tools for automated construction of predictive models in data intensive areas of engineering and science. The family of regularized kernel methods have in the recent years become one of the mainstream approaches to machine learning, due to a number of advantages the methods share. The approach provides theoretically well-founded solutions to the problems of under- and overfitting, allows learning from structured data, and has been empirically demonstrated to yield high predictive performance on a wide range of application domains. Historically, the problems of classification and regression have gained the majority of attention in the field. In this thesis we focus on another type of learning problem, that of learning to rank. In learning to rank, the aim is from a set of past observations to learn a ranking function that can order new objects according to how well they match some underlying criterion of goodness. As an important special case of the setting, we can recover the bipartite ranking problem, corresponding to maximizing the area under the ROC curve (AUC) in binary classification. Ranking applications appear in a large variety of settings, examples encountered in this thesis include document retrieval in web search, recommender systems, information extraction and automated parsing of natural language. We consider the pairwise approach to learning to rank, where ranking models are learned by minimizing the expected probability of ranking any two randomly drawn test examples incorrectly. The development of computationally efficient kernel methods, based on this approach, has in the past proven to be challenging. Moreover, it is not clear what techniques for estimating the predictive performance of learned models are the most reliable in the ranking setting, and how the techniques can be implemented efficiently. The contributions of this thesis are as follows. First, we develop RankRLS, a computationally efficient kernel method for learning to rank, that is based on minimizing a regularized pairwise least-squares loss. In addition to training methods, we introduce a variety of algorithms for tasks such as model selection, multi-output learning, and cross-validation, based on computational shortcuts from matrix algebra. Second, we improve the fastest known training method for the linear version of the RankSVM algorithm, which is one of the most well established methods for learning to rank. Third, we study the combination of the empirical kernel map and reduced set approximation, which allows the large-scale training of kernel machines using linear solvers, and propose computationally efficient solutions to cross-validation when using the approach. Next, we explore the problem of reliable cross-validation when using AUC as a performance criterion, through an extensive simulation study. We demonstrate that the proposed leave-pair-out cross-validation approach leads to more reliable performance estimation than commonly used alternative approaches. Finally, we present a case study on applying machine learning to information extraction from biomedical literature, which combines several of the approaches considered in the thesis. The thesis is divided into two parts. Part I provides the background for the research work and summarizes the most central results, Part II consists of the five original research articles that are the main contribution of this thesis.