3 resultados para Learning, Nursing, Role play, Simulation, Video
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Tämän työn tavoitteena oli selvittää tietojohtamisen eri käytäntöjen vaikutusta oppimiseen, uudistumiseen sekä yrityksen innovaatiokyvykkyyteen. Työssä on keskitytty erityisesti sellaisiin tietojohtamisen käytäntöihin, jotka edistävät oppimista ja uusiutumista yrityksissä. Työssä on käytetty tilastollisia menetelmiä, muun muassa faktorianalyysia, korrelaatioanalyysia sekä regressiota, analysoitaessa 259 suomalaisesta yrityksestä kerättyä kyselydataa niiden tietojohtamisen käytöntöihin ja aineettomaan pääomaan liittyen. Analyysi osoittaa, että useat tietojohtamisen käytännöt vaikuttavat positiivisesti yrityksen uudistumiseen ja sitä kautta innovaatiokyvykkyyteen. Henkilöstön kouluttaminen sekä parhaiden käytäntöjen kerääminen ja soveltaminen yrityksessä ovat positiivisesti yhteydessä innovaatiokyvykkyyteen. Henkilöstön kouluttamisella on merkittävin suora vaikutus innovaatiokyvykkyyteen ja tässä työssä on esitetty, että koulutuksen tarjoamisen suurin vaikutus on oppimismyönteisen kulttuurin kehittyminen yrityksiin sen sijaan, että koulutuksella pyrittäisiin vain parantamaan tehtäväkenttään liittyviä taitoja ja tietoja. Henkilöstön kouluttaminen, parhaat käytännöt sekä sosialisaatiossa tapahtuva tiedon vaihto ja suhteiden solmiminen vaikuttavat positiivisesti uudistumispääomaan. Työn tulosten perusteella uudistumispääomalla on merkittävä rooli innovaatioiden syntymisessä yrityksissä. Uudistumispääoma medioi koulutuksen, parhaiden käytäntöjen ja mahdollisesti myös sosialisaation vaikutusta innovaatiokyvykkyyteen ja on näin merkittävä osa innovaatioiden syntyä yrityksissä. Innovaatiokyvykkyyden osatekijöiden ymmärtäminen voi auttaa johtajia ja esimiehiä keskittämään huomionsa tiettyihin tietojohtamisen käytäntöihin edistääkseen innovaatioiden syntymistä yrityksessä sen sijaan, että he pyrkisivät vain vaikuttamaan innovaatioprosessiin.
Resumo:
Manufacturing companies have passed from selling uniquely tangible products to adopting a service-oriented approach to generate steady and continuous revenue streams. Nowadays, equipment and machine manufacturers possess technologies to track and analyze product-related data for obtaining relevant information from customers’ use towards the product after it is sold. The Internet of Things on Industrial environments will allow manufacturers to leverage lifecycle product traceability for innovating towards an information-driven services approach, commonly referred as “Smart Services”, for achieving improvements in support, maintenance and usage processes. The aim of this study is to conduct a literature review and empirical analysis to present a framework that describes a customer-oriented approach for developing information-driven services leveraged by the Internet of Things in manufacturing companies. The empirical study employed tools for the assessment of customer needs for analyzing the case company in terms of information requirements and digital needs. The literature review supported the empirical analysis with a deep research on product lifecycle traceability and digitalization of product-related services within manufacturing value chains. As well as the role of simulation-based technologies on supporting the “Smart Service” development process. The results obtained from the case company analysis show that the customers mainly demand information that allow them to monitor machine conditions, machine behavior on different geographical conditions, machine-implement interactions, and resource and energy consumption. Put simply, information outputs that allow them to increase machine productivity for maximizing yields, save time and optimize resources in the most sustainable way. Based on customer needs assessment, this study presents a framework to describe the initial phases of a “Smart Service” development process, considering the requirements of Smart Engineering methodologies.
Resumo:
The objective of this study is to show that bone strains due to dynamic mechanical loading during physical activity can be analysed using the flexible multibody simulation approach. Strains within the bone tissue play a major role in bone (re)modeling. Based on previous studies, it has been shown that dynamic loading seems to be more important for bone (re)modeling than static loading. The finite element method has been used previously to assess bone strains. However, the finite element method may be limited to static analysis of bone strains due to the expensive computation required for dynamic analysis, especially for a biomechanical system consisting of several bodies. Further, in vivo implementation of strain gauges on the surfaces of bone has been used previously in order to quantify the mechanical loading environment of the skeleton. However, in vivo strain measurement requires invasive methodology, which is challenging and limited to certain regions of superficial bones only, such as the anterior surface of the tibia. In this study, an alternative numerical approach to analyzing in vivo strains, based on the flexible multibody simulation approach, is proposed. In order to investigate the reliability of the proposed approach, three 3-dimensional musculoskeletal models where the right tibia is assumed to be flexible, are used as demonstration examples. The models are employed in a forward dynamics simulation in order to predict the tibial strains during walking on a level exercise. The flexible tibial model is developed using the actual geometry of the subject’s tibia, which is obtained from 3 dimensional reconstruction of Magnetic Resonance Images. Inverse dynamics simulation based on motion capture data obtained from walking at a constant velocity is used to calculate the desired contraction trajectory for each muscle. In the forward dynamics simulation, a proportional derivative servo controller is used to calculate each muscle force required to reproduce the motion, based on the desired muscle contraction trajectory obtained from the inverse dynamics simulation. Experimental measurements are used to verify the models and check the accuracy of the models in replicating the realistic mechanical loading environment measured from the walking test. The predicted strain results by the models show consistency with literature-based in vivo strain measurements. In conclusion, the non-invasive flexible multibody simulation approach may be used as a surrogate for experimental bone strain measurement, and thus be of use in detailed strain estimation of bones in different applications. Consequently, the information obtained from the present approach might be useful in clinical applications, including optimizing implant design and devising exercises to prevent bone fragility, accelerate fracture healing and reduce osteoporotic bone loss.