9 resultados para Language processing

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The human language-learning ability persists throughout life, indicating considerable flexibility at the cognitive and neural level. This ability spans from expanding the vocabulary in the mother tongue to acquisition of a new language with its lexicon and grammar. The present thesis consists of five studies that tap both of these aspects of adult language learning by using magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) during language processing and language learning tasks. The thesis shows that learning novel phonological word forms, either in the native tongue or when exposed to a foreign phonology, activates the brain in similar ways. The results also show that novel native words readily become integrated in the mental lexicon. Several studies in the thesis highlight the left temporal cortex as an important brain region in learning and accessing phonological forms. Incidental learning of foreign phonological word forms was reflected in functionally distinct temporal lobe areas that, respectively, reflected short-term memory processes and more stable learning that persisted to the next day. In a study where explicitly trained items were tracked for ten months, it was found that enhanced naming-related temporal and frontal activation one week after learning was predictive of good long-term memory. The results suggest that memory maintenance is an active process that depends on mechanisms of reconsolidation, and that these process vary considerably between individuals. The thesis put special emphasis on studying language learning in the context of language production. The neural foundation of language production has been studied considerably less than that of perceptive language, especially on the sentence level. A well-known paradigm in language production studies is picture naming, also used as a clinical tool in neuropsychology. This thesis shows that accessing the meaning and phonological form of a depicted object are subserved by different neural implementations. Moreover, a comparison between action and object naming from identical images indicated that the grammatical class of the retrieved word (verb, noun) is less important than the visual content of the image. In the present thesis, the picture naming was further modified into a novel paradigm in order to probe sentence-level speech production in a newly learned miniature language. Neural activity related to grammatical processing did not differ between the novel language and the mother tongue, but stronger neural activation for the novel language was observed during the planning of the upcoming output, likely related to more demanding lexical retrieval and short-term memory. In sum, the thesis aimed at examining language learning by combining different linguistic domains, such as phonology, semantics, and grammar, in a dynamic description of language processing in the human brain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent advances in machine learning methods enable increasingly the automatic construction of various types of computer assisted methods that have been difficult or laborious to program by human experts. The tasks for which this kind of tools are needed arise in many areas, here especially in the fields of bioinformatics and natural language processing. The machine learning methods may not work satisfactorily if they are not appropriately tailored to the task in question. However, their learning performance can often be improved by taking advantage of deeper insight of the application domain or the learning problem at hand. This thesis considers developing kernel-based learning algorithms incorporating this kind of prior knowledge of the task in question in an advantageous way. Moreover, computationally efficient algorithms for training the learning machines for specific tasks are presented. In the context of kernel-based learning methods, the incorporation of prior knowledge is often done by designing appropriate kernel functions. Another well-known way is to develop cost functions that fit to the task under consideration. For disambiguation tasks in natural language, we develop kernel functions that take account of the positional information and the mutual similarities of words. It is shown that the use of this information significantly improves the disambiguation performance of the learning machine. Further, we design a new cost function that is better suitable for the task of information retrieval and for more general ranking problems than the cost functions designed for regression and classification. We also consider other applications of the kernel-based learning algorithms such as text categorization, and pattern recognition in differential display. We develop computationally efficient algorithms for training the considered learning machines with the proposed kernel functions. We also design a fast cross-validation algorithm for regularized least-squares type of learning algorithm. Further, an efficient version of the regularized least-squares algorithm that can be used together with the new cost function for preference learning and ranking tasks is proposed. In summary, we demonstrate that the incorporation of prior knowledge is possible and beneficial, and novel advanced kernels and cost functions can be used in algorithms efficiently.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this thesis we study the field of opinion mining by giving a comprehensive review of the available research that has been done in this topic. Also using this available knowledge we present a case study of a multilevel opinion mining system for a student organization's sales management system. We describe the field of opinion mining by discussing its historical roots, its motivations and applications as well as the different scientific approaches that have been used to solve this challenging problem of mining opinions. To deal with this huge subfield of natural language processing, we first give an abstraction of the problem of opinion mining and describe the theoretical frameworks that are available for dealing with appraisal language. Then we discuss the relation between opinion mining and computational linguistics which is a crucial pre-processing step for the accuracy of the subsequent steps of opinion mining. The second part of our thesis deals with the semantics of opinions where we describe the different ways used to collect lists of opinion words as well as the methods and techniques available for extracting knowledge from opinions present in unstructured textual data. In the part about collecting lists of opinion words we describe manual, semi manual and automatic ways to do so and give a review of the available lists that are used as gold standards in opinion mining research. For the methods and techniques of opinion mining we divide the task into three levels that are the document, sentence and feature level. The techniques that are presented in the document and sentence level are divided into supervised and unsupervised approaches that are used to determine the subjectivity and polarity of texts and sentences at these levels of analysis. At the feature level we give a description of the techniques available for finding the opinion targets, the polarity of the opinions about these opinion targets and the opinion holders. Also at the feature level we discuss the various ways to summarize and visualize the results of this level of analysis. In the third part of our thesis we present a case study of a sales management system that uses free form text and that can benefit from an opinion mining system. Using the knowledge gathered in the review of this field we provide a theoretical multi level opinion mining system (MLOM) that can perform most of the tasks needed from an opinion mining system. Based on the previous research we give some hints that many of the laborious market research tasks that are done by the sales force, which uses this sales management system, can improve their insight about their partners and by that increase the quality of their sales services and their overall results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Learning of preference relations has recently received significant attention in machine learning community. It is closely related to the classification and regression analysis and can be reduced to these tasks. However, preference learning involves prediction of ordering of the data points rather than prediction of a single numerical value as in case of regression or a class label as in case of classification. Therefore, studying preference relations within a separate framework facilitates not only better theoretical understanding of the problem, but also motivates development of the efficient algorithms for the task. Preference learning has many applications in domains such as information retrieval, bioinformatics, natural language processing, etc. For example, algorithms that learn to rank are frequently used in search engines for ordering documents retrieved by the query. Preference learning methods have been also applied to collaborative filtering problems for predicting individual customer choices from the vast amount of user generated feedback. In this thesis we propose several algorithms for learning preference relations. These algorithms stem from well founded and robust class of regularized least-squares methods and have many attractive computational properties. In order to improve the performance of our methods, we introduce several non-linear kernel functions. Thus, contribution of this thesis is twofold: kernel functions for structured data that are used to take advantage of various non-vectorial data representations and the preference learning algorithms that are suitable for different tasks, namely efficient learning of preference relations, learning with large amount of training data, and semi-supervised preference learning. Proposed kernel-based algorithms and kernels are applied to the parse ranking task in natural language processing, document ranking in information retrieval, and remote homology detection in bioinformatics domain. Training of kernel-based ranking algorithms can be infeasible when the size of the training set is large. This problem is addressed by proposing a preference learning algorithm whose computation complexity scales linearly with the number of training data points. We also introduce sparse approximation of the algorithm that can be efficiently trained with large amount of data. For situations when small amount of labeled data but a large amount of unlabeled data is available, we propose a co-regularized preference learning algorithm. To conclude, the methods presented in this thesis address not only the problem of the efficient training of the algorithms but also fast regularization parameter selection, multiple output prediction, and cross-validation. Furthermore, proposed algorithms lead to notably better performance in many preference learning tasks considered.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biomedical natural language processing (BioNLP) is a subfield of natural language processing, an area of computational linguistics concerned with developing programs that work with natural language: written texts and speech. Biomedical relation extraction concerns the detection of semantic relations such as protein-protein interactions (PPI) from scientific texts. The aim is to enhance information retrieval by detecting relations between concepts, not just individual concepts as with a keyword search. In recent years, events have been proposed as a more detailed alternative for simple pairwise PPI relations. Events provide a systematic, structural representation for annotating the content of natural language texts. Events are characterized by annotated trigger words, directed and typed arguments and the ability to nest other events. For example, the sentence “Protein A causes protein B to bind protein C” can be annotated with the nested event structure CAUSE(A, BIND(B, C)). Converted to such formal representations, the information of natural language texts can be used by computational applications. Biomedical event annotations were introduced by the BioInfer and GENIA corpora, and event extraction was popularized by the BioNLP'09 Shared Task on Event Extraction. In this thesis we present a method for automated event extraction, implemented as the Turku Event Extraction System (TEES). A unified graph format is defined for representing event annotations and the problem of extracting complex event structures is decomposed into a number of independent classification tasks. These classification tasks are solved using SVM and RLS classifiers, utilizing rich feature representations built from full dependency parsing. Building on earlier work on pairwise relation extraction and using a generalized graph representation, the resulting TEES system is capable of detecting binary relations as well as complex event structures. We show that this event extraction system has good performance, reaching the first place in the BioNLP'09 Shared Task on Event Extraction. Subsequently, TEES has achieved several first ranks in the BioNLP'11 and BioNLP'13 Shared Tasks, as well as shown competitive performance in the binary relation Drug-Drug Interaction Extraction 2011 and 2013 shared tasks. The Turku Event Extraction System is published as a freely available open-source project, documenting the research in detail as well as making the method available for practical applications. In particular, in this thesis we describe the application of the event extraction method to PubMed-scale text mining, showing how the developed approach not only shows good performance, but is generalizable and applicable to large-scale real-world text mining projects. Finally, we discuss related literature, summarize the contributions of the work and present some thoughts on future directions for biomedical event extraction. This thesis includes and builds on six original research publications. The first of these introduces the analysis of dependency parses that leads to development of TEES. The entries in the three BioNLP Shared Tasks, as well as in the DDIExtraction 2011 task are covered in four publications, and the sixth one demonstrates the application of the system to PubMed-scale text mining.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The overwhelming amount and unprecedented speed of publication in the biomedical domain make it difficult for life science researchers to acquire and maintain a broad view of the field and gather all information that would be relevant for their research. As a response to this problem, the BioNLP (Biomedical Natural Language Processing) community of researches has emerged and strives to assist life science researchers by developing modern natural language processing (NLP), information extraction (IE) and information retrieval (IR) methods that can be applied at large-scale, to scan the whole publicly available biomedical literature and extract and aggregate the information found within, while automatically normalizing the variability of natural language statements. Among different tasks, biomedical event extraction has received much attention within BioNLP community recently. Biomedical event extraction constitutes the identification of biological processes and interactions described in biomedical literature, and their representation as a set of recursive event structures. The 2009–2013 series of BioNLP Shared Tasks on Event Extraction have given raise to a number of event extraction systems, several of which have been applied at a large scale (the full set of PubMed abstracts and PubMed Central Open Access full text articles), leading to creation of massive biomedical event databases, each of which containing millions of events. Sinece top-ranking event extraction systems are based on machine-learning approach and are trained on the narrow-domain, carefully selected Shared Task training data, their performance drops when being faced with the topically highly varied PubMed and PubMed Central documents. Specifically, false-positive predictions by these systems lead to generation of incorrect biomolecular events which are spotted by the end-users. This thesis proposes a novel post-processing approach, utilizing a combination of supervised and unsupervised learning techniques, that can automatically identify and filter out a considerable proportion of incorrect events from large-scale event databases, thus increasing the general credibility of those databases. The second part of this thesis is dedicated to a system we developed for hypothesis generation from large-scale event databases, which is able to discover novel biomolecular interactions among genes/gene-products. We cast the hypothesis generation problem as a supervised network topology prediction, i.e predicting new edges in the network, as well as types and directions for these edges, utilizing a set of features that can be extracted from large biomedical event networks. Routine machine learning evaluation results, as well as manual evaluation results suggest that the problem is indeed learnable. This work won the Best Paper Award in The 5th International Symposium on Languages in Biology and Medicine (LBM 2013).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given the structural and acoustical similarities between speech and music, and possible overlapping cerebral structures in speech and music processing, a possible relationship between musical aptitude and linguistic abilities, especially in terms of second language pronunciation skills, was investigated. Moreover, the laterality effect of the mother tongue was examined with both adults and children by means of dichotic listening scores. Finally, two event-related potential studies sought to reveal whether children with advanced second language pronunciation skills and higher general musical aptitude differed from children with less-advanced pronunciation skills and less musical aptitude in accuracy when preattentively processing mistuned triads and music / speech sound durations. The results showed a significant relationship between musical aptitude, English language pronunciation skills, chord discrimination ability, and sound-change-evoked brain activation in response to musical stimuli (durational differences and triad contrasts). Regular music practice may also have a modulatory effect on the brain’s linguistic organization and cause altered hemispheric functioning in those who have regularly practised music for years. Based on the present results, it is proposed that language skills, both in production and discrimination, are interconnected with perceptual musical skills.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Middle ear infections (acute otitis media, AOM) are among the most common infectious diseases in childhood, their incidence being greatest at the age of 6–12 months. Approximately 10–30% of children undergo repetitive periods of AOM, referred to as recurrent acute otitis media (RAOM). Middle ear fluid during an AOM episode causes, on average, 20–30 dB of hearing loss lasting from a few days to as much as a couple of months. It is well known that even a mild permanent hearing loss has an effect on language development but so far there is no consensus regarding the consequences of RAOM on childhood language acquisition. The results of studies on middle ear infections and language development have been partly discrepant and the exact effects of RAOM on the developing central auditory nervous system are as yet unknown. This thesis aims to examine central auditory processing and speech production among 2-year-old children with RAOM. Event-related potentials (ERPs) extracted from electroencephalography can be used to objectively investigate the functioning of the central auditory nervous system. For the first time this thesis has utilized auditory ERPs to study sound encoding and preattentive auditory discrimination of speech stimuli, and neural mechanisms of involuntary auditory attention in children with RAOM. Furthermore, the level of phonological development was studied by investigating the number and the quality of consonants produced by these children. Acquisition of consonant phonemes, which are harder to hear than vowels, is a good indicator of the ability to form accurate memory representations of ambient language and has not been studied previously in Finnish-speaking children with RAOM. The results showed that the cortical sound encoding was intact but the preattentive auditory discrimination of multiple speech sound features was atypical in those children with RAOM. Furthermore, their neural mechanisms of auditory attention differed from those of their peers, thus indicating that children with RAOM are atypically sensitive to novel but meaningless sounds. The children with RAOM also produced fewer consonants than their controls. Noticeably, they had a delay in the acquisition of word-medial consonants and the Finnish phoneme /s/, which is acoustically challenging to perceive compared to the other Finnish phonemes. The findings indicate the immaturity of central auditory processing in the children with RAOM, and this might also emerge in speech production. This thesis also showed that the effects of RAOM on central auditory processing are long-lasting because the children had healthy ears at the time of the study. An effective neural network for speech sound processing is a basic requisite of language acquisition, and RAOM in early childhood should be considered as a risk factor for language development.