40 resultados para LIQUID SURFACTANT MEMBRANES

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The amphiphilic nature of metal extractants causes the formation of micelles and other microscopic aggregates when in contact with water and an organic diluent. These phenomena and their effects on metal extraction were studied using carboxylic acid (Versatic 10) and organophosphorus acid (Cyanex 272) based extractants. Special emphasis was laid on the study of phase behaviour in a pre neutralisation stage when the extractant is transformed to a sodium or ammonium salt form. The pre neutralised extractants were used to extract nickel and to separate cobalt and nickel. Phase diagrams corresponding to the pre neutralisation stage in a metal extraction process were determined. The maximal solubilisation of the components in the system water(NH3)/extractant/isooctane takes place when the molar ratio between the ammonia salt form and the free form of the extractant is 0.5 for the carboxylic acid and 1 for the organophosphorus acid extractant. These values correspond to the complex stoichiometry of NH4A•HA and NIi4A, respectively. When such a solution is contacted with water a microemulsion is formed. If the aqueous phase contains also metal ions (e.g. Ni²+), complexation will take place on the microscopic interface of the micellar aggregates. Experimental evidence showing that the initial stage of nickel extraction with pre neutralised Versatic 10 is a fast pseudohomogeneous reaction was obtained. About 90% of the metal were extracted in the first 15 s after the initial contact. For nickel extraction with pre neutralised Versatic 10 it was found that the highest metal loading and the lowest residual ammonia and water contents in the organic phase are achieved when the feeds are balanced so that the stoichiometry is 2NH4+(org) = Nit2+(aq). In the case of Co/Ni separation using pre neutralised Cyanex 272 the highest separation is achieved when the Co/extractant molar ratio in the feeds is 1 : 4 and at the same time the optimal degree of neutralisation of the Cyanex 272 is about 50%. The adsorption of the extractants on solid surfaces may cause accumulation of solid fine particles at the interface between the aqueous and organic phases in metal extraction processes. Copper extraction processes are known to suffer of this problem. Experiments were carried out using model silica and mica particles. It was found that high copper loading, aromacity of the diluent, modification agents and the presence of aqueous phase decrease the adsorption of the hydroxyoxime on silica surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the theory part the membrane emulsification was studied. Emulsions are used in many industrial areas. Traditionally emulsions are prepared by using high shear in rotor-stator systems or in high pressure homogenizer systems. In membrane emulsification two immiscible liquids are mixed by pressuring one liquid through the membrane into the other liquid. With this technique energy could be saved, more homogeneous droplets could be formed and the amount of surfactant could be decreased. Ziegler-Natta and single-site catalysts are used in olefin polymerization processes. Nowadays, these catalysts are prepared according to traditional mixing emulsification. More homogeneous catalyst particles that have narrower particle size distribution might be prepared with membrane emulsification. The aim of the experimental part was to examine the possibility to prepare single site polypropylene catalyst using membrane emulsification technique. Different membrane materials and solidification techniques of the emulsion were examined. Also the toluene-PFC phase diagram was successfully measured during this thesis work. This phase diagram was used for process optimization. The polytetrafluoroethylene membranes had the largest contact angles with toluene and also the biggest difference between the contact angles measured with PFC and toluene. Despite of the contact angle measurement results no significant difference was noticed between particles prepared using PTFE membrane or metal sinter. The particle size distributions of catalyst prepared in these tests were quite wide. This would probably be fixed by using a membrane with a more homogeneous pore size distribution. It is also possible that the solidification rate has an effect on the particle sizes and particle morphology. When polymeric membranes are compared PTFE is probably still the best material for the process as it had the best chemical durability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In bubbly flow simulations, bubble size distribution is an important factor in determination of hydrodynamics. Beside hydrodynamics, it is crucial in the prediction of interfacial area available for mass transfer and in the prediction of reaction rate in gas-liquid reactors such as bubble columns. Solution of population balance equations is a method which can help to model the size distribution by considering continuous bubble coalescence and breakage. Therefore, in Computational Fluid Dynamic simulations it is necessary to couple CFD and Population Balance Model (CFD-PBM) to get reliable distribution. In the current work a CFD-PBM coupled model is implemented as FORTRAN subroutines in ANSYS CFX 10 and it has been tested for bubbly flow. This model uses the idea of Multi Phase Multi Size Group approach which was previously presented by Sha et al. (2006) [18]. The current CFD-PBM coupled method considers inhomogeneous flow field for different bubble size groups in the Eulerian multi-dispersed phase systems. Considering different velocity field for bubbles can give the advantageof more accurate solution of hydrodynamics. It is also an improved method for prediction of bubble size distribution in multiphase flow compared to available commercial packages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study considered the current situation of solid and liquid biofuels markets and international biofuels trade in Finland and identified the challenges ofthe emerging international biofuels markets for Finland. The fact that industryconsumes more than half of the total primary energy, widely applied combined heat and power production (CHP) and a high share of biofuels in the total energy consumption are specific to the Finnish energy system. One third of the electricity is generated in CHP plants. As much as 27% of the total energy consumption ismet by using wood and peat, which makes Finland the leading country in the use of biofuels. Finland has made a commitment to maintain greenhouse gas emissions at the 1990 level at the highest during the period 2008-2012. The Finnish energypolicy aims to achieve the target, and a variety of measures are taken to promote the use of renewable energy sources and especially wood fuels. In this study, the wooden raw material streams of the forest industry were included the international biofuels trade in addition to biomass streams that are traded for energy production. In 2004, as much as 45% of the raw wood importedinto Finland ended up in energy production. The total international trading of biofuels was evaluated at 72 PJ, of which the majority, 58 PJ, was raw wood. About 22% of wood based energy in Finland originated from imported raw wood. Tall oil and wood pellets composed the largest export streams of biofuels. The annual turnover of international biofuels trade was estimated at about ¤ 90 million fordirect trade and at about ¤ 190 million for indirect trade. The forest industryas the biggest user of wood, and the producer and user of wood fuels has a central position in biomass and biofuels markets in Finland. Lately, the international aspects of Finnish biofuels markets have been emphasised as the import of rawwood and the export of wood pellets have increased. Expanding the use of biofuels in the road transportation sector would increase the international streams ofbiofuels in Finland. In coming years, the international trading of biomass for energy purposes can be expected to continue growing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Woven monofilament, multifilament, and spun yarn filter media have long been the standard media in liquid filtration equipment. While the energy for a solid-liquid separation process is determined by the engineering work, it is the interface between the slurry and the equipment - the filter media - that greatly affects the performance characteristics of the unit operation. Those skilled in the art are well aware that a poorly designed filter medium may endanger the whole operation, whereas well-performing filter media can make the operation smooth and economical. As the mineral and pulp producers seek to produce ever finer and more refined fractions of their products, it is becoming increasingly important to be able to dewater slurries with average particle sizes around 1 ¿m using conventional, high-capacity filtration equipment. Furthermore, the surface properties of the media must not allow sticky and adhesive particles to adhere to the media. The aim of this thesis was to test how the dirt-repellency, electrical resistance and highpressure filtration performance of selected woven filter media can be improved by modifying the fabric or yarn with coating, chemical treatment and calendering. The results achieved by chemical surface treatments clearly show that the woven media surface properties can be modified to achieve lower electrical resistance and improved dirt-repellency. The main challenge with the chemical treatments is the abrasion resistance and, while the experimental results indicate that the treatment is sufficiently permanent to resist standard weathering conditions, they may still prove to be inadequately strong in terms of actual use.From the pressure filtration studies in this work, it seems obvious that the conventional woven multifilament fabrics still perform surprisingly well against the coated media in terms of filtrate clarity and cake build-up. Especially in cases where the feed slurry concentration was low and the pressures moderate, the conventional media seemed to outperform the coated media. In the cases where thefeed slurry concentration was high, the tightly woven media performed well against the monofilament reference fabrics, but seemed to do worse than some of the coated media. This result is somewhat surprising in that the high initial specific resistance of the coated media would suggest that the media will blind more easily than the plain woven media. The results indicate, however, that it is actually the woven media that gradually clogs during the coarse of filtration. In conclusion, it seems obvious that there is a pressure limit above which the woven media looses its capacity to keep the solid particles from penetrating the structure. This finding suggests that for extreme pressures the only foreseeable solution is the coated fabrics supported by a strong enough woven fabric to hold thestructure together. Having said that, the high pressure filtration process seems to follow somewhat different laws than the more conventional processes. Based on the results, it may well be that the role of the cloth is most of all to support the cake, and the main performance-determining factor is a long life time. Measuring the pore size distribution with a commercially available porometer gives a fairly accurate picture of the pore size distribution of a fabric, but failsto give insight into which of the pore sizes is the most important in determining the flow through the fabric. Historically air, and sometimes water, permeability measures have been the standard in evaluating media filtration performance including particle retention. Permeability, however, is a function of a multitudeof variables and does not directly allow the estimation of the effective pore size. In this study a new method for estimating the effective pore size and open pore area in a densely woven multifilament fabric was developed. The method combines a simplified equation of the electrical resistance of fabric with the Hagen-Poiseuille flow equation to estimate the effective pore size of a fabric and the total open area of pores. The results are validated by comparison to the measured values of the largest pore size (Bubble point) and the average pore size. The results show good correlation with measured values. However, the measured and estimated values tend to diverge in high weft density fabrics. This phenomenon is thought to be a result of a more tortuous flow path of denser fabrics, and could most probably be cured by using another value for the tortuosity factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rigorous unit operation model is developed for vapor membrane separation. The new model is able to describe temperature, pressure, and concentration dependent permeation as wellreal fluid effects in vapor and gas separation with hydrocarbon selective rubbery polymeric membranes. The permeation through the membrane is described by a separate treatment of sorption and diffusion within the membrane. The chemical engineering thermodynamics is used to describe the equilibrium sorption of vapors and gases in rubbery membranes with equation of state models for polymeric systems. Also a new modification of the UNIFAC model is proposed for this purpose. Various thermodynamic models are extensively compared in order to verify the models' ability to predict and correlate experimental vapor-liquid equilibrium data. The penetrant transport through the selective layer of the membrane is described with the generalized Maxwell-Stefan equations, which are able to account for thebulk flux contribution as well as the diffusive coupling effect. A method is described to compute and correlate binary penetrant¿membrane diffusion coefficients from the experimental permeability coefficients at different temperatures and pressures. A fluid flow model for spiral-wound modules is derived from the conservation equation of mass, momentum, and energy. The conservation equations are presented in a discretized form by using the control volume approach. A combination of the permeation model and the fluid flow model yields the desired rigorous model for vapor membrane separation. The model is implemented into an inhouse process simulator and so vapor membrane separation may be evaluated as an integralpart of a process flowsheet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Membrane filtration has become increasingly attractive in the processing of both foodand biotechnological products. However, the poor selectivity of the membranes and fouling are the critical factors limiting the development of UF systems for the specific fractionation of protein mixtures. This thesis gives an overview on fractionation of proteins from model protein solutions or from biological solutions. An attempt was made to improve the selectivity of the available membranes by modifying the membranes and by exploiting the different electrostatic interactions between the proteins and the membrane pore surfaces. Fractionation and UF behavior of proteins in the model solutions and in the corresponding biological solutions were compared. Characterization of the membranes and protein adsorptionto the membrane were investigated with combined flux and streaming potential studies. It has been shown that fouling of the membranes can be reduced using "self-rejecting" membranes at pH values where electrostatic repulsion is achieved between the membrane and the proteins in solution. This effect is best shown in UF of dilute single protein solutions at low ionic strengths and low pressures. Fractionation of model proteins in single, binary, and ternary solutionshas been carried out. The results have been compared to the results obtained from fractination of biological solutions. It was generally observed that fractination of proteins from biological solutions are more difficult to carry out owingto the presence of non studied protein components with different properties. Itcan be generally concluded that it is easier to enrich the smaller protein in the permeate but it is also possible to enrich the larger protein in the permeateat pH values close to the isoelectric point of the protein. It should be possible to find an optimal flux and modification to effectively improve the fractination of proteins even with very similar molar masses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gas-liquid mass transfer is an important issue in the design and operation of many chemical unit operations. Despite its importance, the evaluation of gas-liquid mass transfer is not straightforward due to the complex nature of the phenomena involved. In this thesis gas-liquid mass transfer was evaluated in three different gas-liquid reactors in a traditional way by measuring the volumetric mass transfer coefficient (kLa). The studied reactors were a bubble column with a T-junction two-phase nozzle for gas dispersion, an industrial scale bubble column reactor for the oxidation of tetrahydroanthrahydroquinone and a concurrent downflow structured bed.The main drawback of this approach is that the obtained correlations give only the average volumetric mass transfer coefficient, which is dependent on average conditions. Moreover, the obtained correlations are valid only for the studied geometry and for the chemical system used in the measurements. In principle, a more fundamental approach is to estimate the interfacial area available for mass transfer from bubble size distributions obtained by solution of population balance equations. This approach has been used in this thesis by developing a population balance model for a bubble column together with phenomenological models for bubble breakage and coalescence. The parameters of the bubble breakage rate and coalescence rate models were estimated by comparing the measured and calculated bubble sizes. The coalescence models always have at least one experimental parameter. This is because the bubble coalescence depends on liquid composition in a way which is difficult to evaluate using known physical properties. The coalescence properties of some model solutions were evaluated by measuring the time that a bubble rests at the free liquid-gas interface before coalescing (the so-calledpersistence time or rest time). The measured persistence times range from 10 msup to 15 s depending on the solution. The coalescence was never found to be instantaneous. The bubble oscillates up and down at the interface at least a coupleof times before coalescence takes place. The measured persistence times were compared to coalescence times obtained by parameter fitting using measured bubble size distributions in a bubble column and a bubble column population balance model. For short persistence times, the persistence and coalescence times are in good agreement. For longer persistence times, however, the persistence times are at least an order of magnitude longer than the corresponding coalescence times from parameter fitting. This discrepancy may be attributed to the uncertainties concerning the estimation of energy dissipation rates, collision rates and mechanisms and contact times of the bubbles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Työssä tutkittiin uutta teknologiaa pigmenttipäällystykseen. Tämä tekniikka on yleisesti tunnettua eräillä muilla teollisuudenaloilla. Kirjallisuustutkimuksessa on esitelty prosessia ja sen eri osatekijöitä sekä muilla aloilla tunnettuja prosessimuuttujia. Päällystyspastojen ja päällystettävien pintojen teoriaa on selvitetty uuden tekniikan ja pigmenttipäällystyksen valossa. Uuden tekniikan perusmekanismeja tutkittiin kokeellisessa osassa. Valuvan nestefilmin stabiilisuutta tutkittiin minimivirtauksen avulla. Stabiilisuustutkimuksen suorittamiseen käytettiin apuna Taguchi-matriisia DOE-ohjelmalla (Design of Experiments). Kokeiden perusteella minimivirtauksen kannalta päällystyspastalle edullisempi koostumus on kalsiumkarbonaatti- kuin kaoliinipasta. Sideaineella on pienempi osuus lateksia ja polyvinyylialkoholia parempi. Suurempi osuus pinta-aktiivista ainetta ja matala pastan kuiva-ainepitoisuus ovat suositeltuja. Tehokas ilmanpoisto päällystyspastasta on myös tärkeää lopullisen tuloksen kannalta. Koekoneella ajetuissa päällystyskokeissa havaittiin valuvan filmin ominaisuuksien tärkeys. Pienetkin kaasumäärät päällystyspastassa häiritsivät lopullisen päällysteen laatua. Päällystyspastan ilmanpoisto on avainasemassa erityisesti kun päällystetään suurella nopeudella pieniä päällystemääriä. Koeajoissa havaittiin kaikki kirjallisuudessa esitellyt rajoittavat tekijät. Kokeissa päällystettiin 400-1600 m/min nopeudella 5-20 g/m² päällystemääriä. Olosuhteet stabiilille nestefilmille vaativat edelleen kehitystä suurella nopeudella päällystettäessä. Päällysteen eroavaisuuksia verrattiin teräpäällystysmenetelmiin. Terä-päällystyksellä saadaan sileä mutta epätasaisesti peittävä pinta kun taas uuden tekniikan päällyste mukailee päällystettävän alustan topografiaa. Tasapaksun päällysteen etuna on hyvä peittävyys jo pienellä päällystemäärällä.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tämän diplomityön tavoitteena on määrittää liiketoimintailmapiiri ja markkinapotentiaali Kiinan nestepakkauskartonkimarkkinoilla. Tutkimus tukee nestepakkauskartonkivalmistajan vientitoimintoja. Pääosin käytännön tiedoista koostuva tutkimus suoritettiin keräämällä sekundaääritietoa ja haastattelemalla alan erikoisasiantuntijoita. Suuri ja kasvava väestö sekä nopeasti kehittyvä talous tukee nestepakkauskartonkimarkkinoiden kasvua Kiinassa. Viimeaikainen globalisaatio haittapuolineen saattaa kuitenkin horjuttaa poliittista ja sosiaalista tasapainoa ja tätä kautta ylellisyys hyödykkeiden kuten kartonkipakattujen tuotteiden kysyntää Kiinassa. Tuontirajoitukset Kiinaan ovat laskemassa valtion tämän hetkisen kansainvälistymispolitiikan seurauksena. Kartonki vahvistaa asemaansa kilpailevien pakkausmateriaalien joukossa. Kiinan kokonaisnestepakkauskartonkimarkkinat kasvavat vuosittain 10,7 % ja ovat vuonna 2001 noin 100 000 tonnia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrafiltration (UF) is widely applied in different separation processes in the pulp and paper industry. The growing need to protect the environment, a lack of pure water and an interest in producing high-value chemicals from compounds present in process waters will probably lead to an increase in the use of UF in the pulp and paper industry. The efficiency and cost-effectiveness of a UF process depends on the applied membrane. The membrane should have a high and stable filtration capacity, a particular selectivity and a long operational lifetime. To meet these requirements a membrane should have a low fouling tendency. In addition, it should withstand the prevailing operational and chemical conditions. This thesis evaluates the performance and applicability of the regenerated cellulose (RC) membranes 00030T and C2 in the treatment of pulp and paper mill process waters based on the requirements above. The results demonstrated that both the tested RC membranes fulfilled well the requirement of high filtration capacity. In addition, in the filtration of a paper mill clear filtrate (CF) the RC membranes were not as greatly affected by variations in the CF quality as a polysulphone membrane. Furthermore, due to their extreme hydrophilicity and weak charge the fouling tendency of the membranes can be expected to be low in pulp and paper mill filtration applications. It is, however, known that fouling cannot be totally avoided even when the membrane is chosen very carefully. This study indicated that carbohydrates influenced negatively on permeability and caused fouling in the filtration of groundwood mill circulation water. Thus, a pre-treatment effectively reducing the amount of carbohydrates might help to maintain a stable capacity. However, the results of the thesis also showed that the removal of some of the possible foulants might just increase the harmful effect of others. Multivariate examination was useful in the understanding of the complicated factors causing the unstable capacity. The thesis also revealed that the 00030T and C2 membranes can be used at high pressure (max. tested pressure 12 bar). The C2 membrane, having a sponge-like substructure, was more pressure resistant, and its performance was more stable at high pressure compared to the UCO30T membrane containing macrovoids in its substructure. Both tested membranes can, according to the results, also be used at temperatures as high as 70°C in acidic, neutral and alkaline conditions. However, the use at extreme conditions might cause faster ageing of the membranes compared to ageing in neutral conditions. The thesis proved that both the tested RC membranes are very suitable for pulp and paper mill applications and that the membranes can be utilised in processes operating in challenging conditions. Thus, they could be used in more demanding applications than supposed earlier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrafiltration (UF) is already used in pulp and paper industry and its demand is growing because of the required reduction of raw water intake and the separation of useful compounds from process waters. In the pulp and paper industry membranes might be exposed to extreme conditions and, therefore, it is important that the membrane can withstand them. In this study, extractives, hemicelluloses and lignin type compounds were separated from wood hydrolysate in order to be able to utilise the hemicelluloses in the production of biofuel. The performance of different polymeric membranes at different temperatures was studied. Samples were analysed for total organic compounds (TOC), lignin compounds (UV absorption at 280 nm) and sugar. Turbidity, conductivity and pH were also measured. The degree of fouling of the membranes was monitored by measuring the pure water flux before and comparing it with the pure water flux after the filtration of hydrolysate. According to the results, the retention of turbidity was observed to be higher at lower temperature compared to when the filtrations were operated at high temperature (70 °C). Permeate flux increased with elevated process temperature. There was no detrimental effect of temperature on most of the membranes used. Microdyn-Nadir regenerated cellulose membranes (RC) and GE-Osmonics thin film membranes seemed to be applicable in the chosen process conditions. The Polyethersulphone (NF-PES-10 and UH004P) and polysulphone (MPS-36) membranes used were highly fouled, but they showed high retentions for different compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis focuses on fibre coalescers whose efficiency is based on the surface properties/characteristics. They have the ability to preferentially wet or interact with one or more of the fluids to be separated. Thus, the interfacial phenomena governing the separation efficiency of the coalescers is investigated depending on physical factors such as flowrates, phase ratios and coalescer packing density. Design of process equipment to produce and separate of the emulsions was carried out.The experimentation was carried out to test the separation efficiency of the coalescing medias, namely fibreglass, polyester I and polyester II. The performances of the coalescing medias were assessed via droplet size information. In conclusion, the objectives (design of process equipment and experimentation) were achieved. Fibre glass was the best coalescing media, next was polyester I and then finally polyester II. Droplets sizes increased with decreased flowrates and increased packing density of the coalescer. Phase ratio had effect on the droplet sizes of the feed but had no effect on the coalescence of droplets of the feed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes a method of visualizing the trend of research in the field of ceramic membranes from 1999 to 2006. The presented approach involves identifying problems encountered during research in the field of ceramic membranes. Patents from US patent database and articles from Science Direct(& by ELSEVIER was analyzed for this work. The identification of problems was achieved with software Knowledgist which focuses on the semantic nature of a sentence to generate series of subject action object structures. The identified problems are classified into major research issues. This classification was used for the visualization of the intensity of research. The image produced gives the relation between the number of patents, with time and the major research issues. The identification of the most cited papers which strongly influence the research of the previously identified major issues in the given field was also carried out. The relations between these papers are presented using the metaphor of social network. The final result of this work are two figures, a diagram showing the change in the studied problems a specified period of time and a figure showing the relations between the major papers and groups of the problems