2 resultados para LIPID CLASS COMPOSITION

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: In the past, oxidized low density lipoprotein (ox-LDL) has been associated with an unbeneficial lipid profile. This atherogenic lipid profile increases the risk of atherosclerotic cardiovascular diseases. Physical fitness has substantial effect on serum lipoprotein concentration as well as body composition and humoral responses, however interrelationships between ox-LDL and physical fitness have not been widely examined in a nationally representative sample. Aims: This thesis evaluates how cardiorespiratory and muscular fitness associate with ox-LDL lipids and how the other known risk factors of atherosclerosis might alter these associations. Subjects and Methods: The study cohort consisted of 846 healthy young males (mean age 25.1, SD 4.6) who were gathered by voluntary nationwide recruitment. Each participant conducted a series of physical fitness tests (cardiorespiratory and muscular fitness) and answered a detailed questionnaire that included lifestyle habits (i.e. smoking and leisuretime physical activity). Venous blood samples including ox-LDL and serum lipids were also collected. Results: Higher levels of ox-LDL were found in overweight and obese men, however, high cardiorespiratory fitness seemed to protect the overweight from high levels of ox-LDL. Young men who smoked and had poor cardiorespiratory or muscular fitness possessed a higher concentration of ox-LDL lipids when compared to comparable levels of cardiorespiratory or muscular fitness non-smoking young men. Metabolic syndrome was associated with increased levels of ox-LDL and high levels of ox-LDL combined with poor cardiorespiratory and abdominal muscle fitness seems to predict metabolic syndrome in young men. Also, participants with poor cardiorespiratory fitness and low levels of testosterone had higher levels of ox-LDL when compared to participants with high cardiorespiratory fitness / low testosterone as well as those with poor cardiorespiratory fitness / high testosterone. Conclusions: Good cardiorespiratory and muscular fitness protects young men from increased levels of ox-LDL lipids. This association was discovered in young men who were categorized as being overweight, smokers, metabolic syndrome or with low levels of testosterone. Being fit seems to prevent higher levels of ox-LDL, even in young healthy

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ceramides comprise a class of sphingolipids that exist only in small amounts in cellular membranes, but which have been associated with important roles in cellular signaling processes. The influences that ceramides have on the physical properties of bilayer membranes reach from altered thermodynamical behavior to significant impacts on the molecular order and lateral distribution of membrane lipids. Along with the idea that the membrane physical state could influence the physiological state of a cell, the membrane properties of ceramides have gained increasing interest. Therefore, membrane phenomena related to ceramides have become a subject of intense study both in cellular as well as in artificial membranes. Artificial bilayers, the so called model membranes, are substantially simpler in terms of contents and spatio-temporal variation than actual cellular membranes, and can be used to give detailed information about the properties of individual lipid species in different environments. This thesis focuses on investigating how the different parts of the ceramide molecule, i.e., the N-linked acyl chain, the long-chain sphingoid base and the membrane-water interface region, govern the interactions and lateral distribution of these lipids in bilayer membranes. With the emphasis on ceramide/sphingomyelin(SM)-interactions, the relevance of the size of the SMhead group for the interaction was also studied. Ceramides with methylbranched N-linked acyl chains, varying length sphingoid bases, or methylated 2N (amide-nitrogen) and 3O (C3-hydroxyl) at the interface region, as well as SMs with decreased head group size, were synthesized and their bilayer properties studied by calorimetric and fluorescence spectroscopic techniques. In brief, the results showed that the packing of the ceramide acyl chains was more sensitive to methyl-branching in the mid part than in the distal end of the N-linked chain, and that disrupting the interfacial structure at the amide-nitrogen, as opposed to the C3-hydroxyl, had greater effect on the interlipid interactions of ceramides. Interestingly, it appeared that the bilayer properties of ceramides could be more sensitive to small alterations in the length of the long-chain base than what was previously reported for the N-linked acyl chain. Furthermore, the data indicated that the SM-head group does not strongly influence the interactions between SMs and ceramides. The results in this thesis illustrate the pivotal role of some essential parts of the ceramide molecules in determining their bilayer properties. The thesis provides increased understanding of the molecular aspects of ceramides that possibly affect their functions in biological membranes, and could relate to distinct effects on cell physiology.