28 resultados para LIGHT COHERENCE
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Summary
Resumo:
Abstract
Resumo:
Abstract
Resumo:
After discovery of cuprates, a search for new high temperature superconducting families began and it led to the discovery of layered pnictide compounds with critical temperatures limited up to ∼56 K. Pnictides consist elements from Group V of Periodic Table (nitrogen, phosphorus, arsenic, antimony and bismuth). In this work coherence length h in mixed state of pnictide superconductors is calculated numerically. In calculation is taken into account interband and intraband impurity scattering in framework of quasiclassical Eilenberger theory for s± pairing symmetry. Differences between Ginzburg-Landau and Eilenberger theories is shown and the comparison with existing models is done.
Resumo:
After discovery of cuprates, a search for new high temperature superconducting families began and it led to the discovery of layered pnictide compounds with critical temperatures limited up to ~56 K. Pnictides consist elements from Group V of Periodic Table (nitrogen, phosphorus, arsenic, antimony and bismuth). In this work coherence length ξh in mixed state of pnictide superconductors is calculated numerically. In calculation is taken into account interband and intraband impurity scattering in framework of quasiclassical Eilenberger theory for s± pairing symmetry. Differences between Ginzburg-Landau and Eilenberger theories is shown and the comparison with existing models is done.
Resumo:
The aim of the present study was to demonstrate the wide applicability of the novel photoluminescent labels called upconverting phosphors (UCPs) in proximity-based bioanalytical assays. The exceptional features of the lanthanide-doped inorganic UCP compounds stem from their capability for photon upconversion resulting in anti-Stokes photoluminescence at visible wavelengths under near-infrared (NIR) excitation. Major limitations related to conventional photoluminescent labels are avoided, rendering the UCPs a competitive next-generation label technology. First, the background luminescence is minimized due to total elimination of autofluorescence. Consequently, improvements in detectability are expected. Second, at the long wavelengths (>600 nm) used for exciting and detecting the UCPs, the transmittance of sample matrixes is significantly greater in comparison with shorter wavelengths. Colored samples are no longer an obstacle to the luminescence measurement, and more flexibility is allowed even in homogeneous assay concepts, where the sample matrix remains present during the entire analysis procedure, including label detection. To transform a UCP particle into a biocompatible label suitable for bioanalytical assays, it must be colloidal in an aqueous environment and covered with biomolecules capable of recognizing the analyte molecule. At the beginning of this study, only UCP bulk material was available, and it was necessary to process the material to submicrometer-sized particles prior to use. Later, the ground UCPs, with irregular shape, wide size-distribution and heterogeneous luminescence properties, were substituted by a smaller-sized spherical UCP material. The surface functionalization of the UCPs was realized by producing a thin hydrophilic coating. Polymer adsorption on the UCP surface is a simple way to introduce functional groups for bioconjugation purposes, but possible stability issues encouraged us to optimize an optional silica-encapsulation method which produces a coating that is not detached in storage or assay conditions. An extremely thin monolayer around the UCPs was pursued due to their intended use as short-distance energy donors, and much attention was paid to controlling the thickness of the coating. The performance of the UCP technology was evaluated in three different homogeneous resonance energy transfer-based bioanalytical assays: a competitive ligand binding assay, a hybridization assay for nucleic acid detection and an enzyme activity assay. To complete the list, a competitive immunoassay has been published previously. Our systematic investigation showed that a nonradiative energy transfer mechanism is indeed involved, when a UCP and an acceptor fluorophore are brought into close proximity in aqueous suspension. This process is the basis for the above-mentioned homogeneous assays, in which the distance between the fluorescent species depends on a specific biomolecular binding event. According to the studies, the submicrometer-sized UCP labels allow versatile proximity-based bioanalysis with low detection limits (a low-nanomolar concentration for biotin, 0.01 U for benzonase enzyme, 0.35 nM for target DNA sequence).
Resumo:
The present thesis discusses the coherence or lack of coherence in the book of Numbers, with special regard to its narrative features. The fragmented nature of Numbers is a well-known problem in research on the book, affecting how we approach and interpret it, but to date there has not been any thorough investigation of the narrative features of the work and how they might contribute to the coherence or the lack of coherence in the book. The discussion is pursued in light of narrative theory, and especially in connection to three parameters that are typically understood to be invoked in the interpretation of narratives: 1) a narrative paradigm, or ‘story,’ meaning events related to each other temporally, causally, and thematically, in a plot with a beginning, middle, and end; 2) discourse, being the expression plane of a narrative, or the devices that an author has at hand in constructing a narrative; 3) the situation or languagegame of the narrative, prototypical examples being factual reports, which seeks to depict a state of affairs, and storytelling narratives, driven by a demand for tellability. In view of these parameters the present thesis argues that it is reasonable to form four groups to describe the narrative material of Numbers: genuine narratives (e.g. Num 12), independent narrative sequences (e.g. Num 5:1-4), instrumental scenes and situations (e.g. Num 27:1-5), and narrative fragments (e.g. Num 18:1). These groups are mixed throughout with non-narrative materials. Seen together, however, the narrative features of these groups can be understood to create an attenuated narrative sequence from beginning to end in Numbers, where one thing happens after another. This sequence, termed the ‘larger story’ of Numbers, concerns the wandering of Israel from Sinai to Moab. Furthermore, the larger story has a fragmented plot. The end-point is fixed on the promised land, Israel prepares for the wandering towards it (Num 1-10), rebels against wandering and the promise and is sent back into the wilderness (Num 13-14), returns again after forty years (Num 21ff.), and prepares for conquering the land (Num 22-36). Finally, themes of the promised land, generational succession, and obedience-disobedience, operate in this larger story. Purity is also a significant theme in the book, albeit not connected to plot in the larger story. All in all, sequence, plot, and theme in the larger story of Numbers can be understood to bring some coherence to the book. However, neither aspect entirely subsumes the whole book, and the four groups of narrative materials can also be understood to underscore the incoherence of the work in differentiating its variegated narrative contents. Numbers should therefore be described as an anthology of different materials that are loosely connected through its narrative features in the larger story, with the aim of informing Israelite identity by depicting a certain period in the early history of the people.