5 resultados para LEVEL OF EVIDENCE: 2B
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Sadannan vaikutus vedenpinnan tasoon kohosuolla
Resumo:
Problem of modeling of anaesthesia depth level is studied in this Master Thesis. It applies analysis of EEG signals with nonlinear dynamics theory and further classification of obtained values. The main stages of this study are the following: data preprocessing; calculation of optimal embedding parameters for phase space reconstruction; obtaining reconstructed phase portraits of each EEG signal; formation of the feature set to characterise obtained phase portraits; classification of four different anaesthesia levels basing on previously estimated features. Classification was performed with: Linear and quadratic Discriminant Analysis, k Nearest Neighbours method and online clustering. In addition, this work provides overview of existing approaches to anaesthesia depth monitoring, description of basic concepts of nonlinear dynamics theory used in this Master Thesis and comparative analysis of several different classification methods.
Resumo:
Volatility has a central role in various theoretical and practical applications in financial markets. These include the applications related to portfolio theory, derivatives pricing and financial risk management. Both theoretical and practical applications require good estimates and forecasts for the asset return volatility. The goal of this study is to examine the forecast performance of one of the more recent volatility measures, model-free implied volatility. Model-free implied volatility is extracted from the prices in the option markets, and it aims to provide an unbiased estimate for the market’s expectation on the future level of volatility. Since it is extracted from the option prices, model-free implied volatility should contain all the relevant information that the market participants have. Moreover, model-free implied volatility requires less restrictive assumptions than the commonly used Black-Scholes implied volatility, which means that it should be less biased estimate for the market’s expectations. Therefore, it should also be a better forecast for the future volatility. The forecast performance of model-free implied volatility is evaluated by comparing it to the forecast performance of Black-Scholes implied volatility and GARCH(1,1) forecast. Weekly forecasts for six years period were calculated for the forecasted variable, German stock market index DAX. The data consisted of price observations for DAX index options. The forecast performance was measured using econometric methods, which aimed to capture the biasedness, accuracy and the information content of the forecasts. The results of the study suggest that the forecast performance of model-free implied volatility is superior to forecast performance of GARCH(1,1) forecast. However, the results also suggest that the forecast performance of model-free implied volatility is not as good as the forecast performance of Black-Scholes implied volatility, which is against the hypotheses based on theory. The results of this study are consistent with the majority of prior research on the subject.