13 resultados para LAA,STROKE,fibrillazione atriale,CFD,fluidodinamica
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
In bubbly flow simulations, bubble size distribution is an important factor in determination of hydrodynamics. Beside hydrodynamics, it is crucial in the prediction of interfacial area available for mass transfer and in the prediction of reaction rate in gas-liquid reactors such as bubble columns. Solution of population balance equations is a method which can help to model the size distribution by considering continuous bubble coalescence and breakage. Therefore, in Computational Fluid Dynamic simulations it is necessary to couple CFD and Population Balance Model (CFD-PBM) to get reliable distribution. In the current work a CFD-PBM coupled model is implemented as FORTRAN subroutines in ANSYS CFX 10 and it has been tested for bubbly flow. This model uses the idea of Multi Phase Multi Size Group approach which was previously presented by Sha et al. (2006) [18]. The current CFD-PBM coupled method considers inhomogeneous flow field for different bubble size groups in the Eulerian multi-dispersed phase systems. Considering different velocity field for bubbles can give the advantageof more accurate solution of hydrodynamics. It is also an improved method for prediction of bubble size distribution in multiphase flow compared to available commercial packages.
Resumo:
The aim of this thesis is to study the mixing of fuel and, also to some extent, the mixing of air in a circulating fluidized bed boiler. In the literature survey part of this thesis, a review is made of the previous experimental studies related to the fuel and air mixing in the circulating fluidized beds. In the simulation part of it the commercial computational fluid dynamics software (FLUENT) is used with the Eulerian multiphase model for studying the fuel mixing in the two and three-dimensional furnace geometries. The results of the three-dimensional simulations are promising and, therefore suggestions are made for the future simulations. The two-dimensional studies give new information of the effects of the fluidization velocity, fuel particle size and fuel density on the fuel mixing. However, the present results show that three-dimensional models produce more realistic representation of the circulating fluidized bed behavior.
Resumo:
The transport of macromolecules, such as low-density lipoprotein (LDL), and their accumulation in the layers of the arterial wall play a critical role in the creation and development of atherosclerosis. Atherosclerosis is a disease of large arteries e.g., the aorta, coronary, carotid, and other proximal arteries that involves a distinctive accumulation of LDL and other lipid-bearing materials in the arterial wall. Over time, plaque hardens and narrows the arteries. The flow of oxygen-rich blood to organs and other parts of the body is reduced. This can lead to serious problems, including heart attack, stroke, or even death. It has been proven that the accumulation of macromolecules in the arterial wall depends not only on the ease with which materials enter the wall, but also on the hindrance to the passage of materials out of the wall posed by underlying layers. Therefore, attention was drawn to the fact that the wall structure of large arteries is different than other vessels which are disease-resistant. Atherosclerosis tends to be localized in regions of curvature and branching in arteries where fluid shear stress (shear rate) and other fluid mechanical characteristics deviate from their normal spatial and temporal distribution patterns in straight vessels. On the other hand, the smooth muscle cells (SMCs) residing in the media layer of the arterial wall respond to mechanical stimuli, such as shear stress. Shear stress may affect SMC proliferation and migration from the media layer to intima. This occurs in atherosclerosis and intimal hyperplasia. The study of blood flow and other body fluids and of heat transport through the arterial wall is one of the advanced applications of porous media in recent years. The arterial wall may be modeled in both macroscopic (as a continuous porous medium) and microscopic scales (as a heterogeneous porous medium). In the present study, the governing equations of mass, heat and momentum transport have been solved for different species and interstitial fluid within the arterial wall by means of computational fluid dynamics (CFD). Simulation models are based on the finite element (FE) and finite volume (FV) methods. The wall structure has been modeled by assuming the wall layers as porous media with different properties. In order to study the heat transport through human tissues, the simulations have been carried out for a non-homogeneous model of porous media. The tissue is composed of blood vessels, cells, and an interstitium. The interstitium consists of interstitial fluid and extracellular fibers. Numerical simulations are performed in a two-dimensional (2D) model to realize the effect of the shape and configuration of the discrete phase on the convective and conductive features of heat transfer, e.g. the interstitium of biological tissues. On the other hand, the governing equations of momentum and mass transport have been solved in the heterogeneous porous media model of the media layer, which has a major role in the transport and accumulation of solutes across the arterial wall. The transport of Adenosine 5´-triphosphate (ATP) is simulated across the media layer as a benchmark to observe how SMCs affect on the species mass transport. In addition, the transport of interstitial fluid has been simulated while the deformation of the media layer (due to high blood pressure) and its constituents such as SMCs are also involved in the model. In this context, the effect of pressure variation on shear stress is investigated over SMCs induced by the interstitial flow both in 2D and three-dimensional (3D) geometries for the media layer. The influence of hypertension (high pressure) on the transport of lowdensity lipoprotein (LDL) through deformable arterial wall layers is also studied. This is due to the pressure-driven convective flow across the arterial wall. The intima and media layers are assumed as homogeneous porous media. The results of the present study reveal that ATP concentration over the surface of SMCs and within the bulk of the media layer is significantly dependent on the distribution of cells. Moreover, the shear stress magnitude and distribution over the SMC surface are affected by transmural pressure and the deformation of the media layer of the aorta wall. This work reflects the fact that the second or even subsequent layers of SMCs may bear shear stresses of the same order of magnitude as the first layer does if cells are arranged in an arbitrary manner. This study has brought new insights into the simulation of the arterial wall, as the previous simplifications have been ignored. The configurations of SMCs used here with elliptic cross sections of SMCs closely resemble the physiological conditions of cells. Moreover, the deformation of SMCs with high transmural pressure which follows the media layer compaction has been studied for the first time. On the other hand, results demonstrate that LDL concentration through the intima and media layers changes significantly as wall layers compress with transmural pressure. It was also noticed that the fraction of leaky junctions across the endothelial cells and the area fraction of fenestral pores over the internal elastic lamina affect the LDL distribution dramatically through the thoracic aorta wall. The simulation techniques introduced in this work can also trigger new ideas for simulating porous media involved in any biomedical, biomechanical, chemical, and environmental engineering applications.
Resumo:
There is an increasing reliance on computers to solve complex engineering problems. This is because computers, in addition to supporting the development and implementation of adequate and clear models, can especially minimize the financial support required. The ability of computers to perform complex calculations at high speed has enabled the creation of highly complex systems to model real-world phenomena. The complexity of the fluid dynamics problem makes it difficult or impossible to solve equations of an object in a flow exactly. Approximate solutions can be obtained by construction and measurement of prototypes placed in a flow, or by use of a numerical simulation. Since usage of prototypes can be prohibitively time-consuming and expensive, many have turned to simulations to provide insight during the engineering process. In this case the simulation setup and parameters can be altered much more easily than one could with a real-world experiment. The objective of this research work is to develop numerical models for different suspensions (fiber suspensions, blood flow through microvessels and branching geometries, and magnetic fluids), and also fluid flow through porous media. The models will have merit as a scientific tool and will also have practical application in industries. Most of the numerical simulations were done by the commercial software, Fluent, and user defined functions were added to apply a multiscale method and magnetic field. The results from simulation of fiber suspension can elucidate the physics behind the break up of a fiber floc, opening the possibility for developing a meaningful numerical model of the fiber flow. The simulation of blood movement from an arteriole through a venule via a capillary showed that the model based on VOF can successfully predict the deformation and flow of RBCs in an arteriole. Furthermore, the result corresponds to the experimental observation illustrates that the RBC is deformed during the movement. The concluding remarks presented, provide a correct methodology and a mathematical and numerical framework for the simulation of blood flows in branching. Analysis of ferrofluids simulations indicate that the magnetic Soret effect can be even higher than the conventional one and its strength depends on the strength of magnetic field, confirmed experimentally by Völker and Odenbach. It was also shown that when a magnetic field is perpendicular to the temperature gradient, there will be additional increase in the heat transfer compared to the cases where the magnetic field is parallel to the temperature gradient. In addition, the statistical evaluation (Taguchi technique) on magnetic fluids showed that the temperature and initial concentration of the magnetic phase exert the maximum and minimum contribution to the thermodiffusion, respectively. In the simulation of flow through porous media, dimensionless pressure drop was studied at different Reynolds numbers, based on pore permeability and interstitial fluid velocity. The obtained results agreed well with the correlation of Macdonald et al. (1979) for the range of actual flow Reynolds studied. Furthermore, calculated results for the dispersion coefficients in the cylinder geometry were found to be in agreement with those of Seymour and Callaghan.
Resumo:
Airlift reactors are pneumatically agitated reactors that have been widely used in chemical, petrochemical, and bioprocess industries, such as fermentation and wastewater treatment. Computational Fluid Dynamics (CFD) has become more popular approach for design, scale-up and performance evaluation of such reactors. In the present work numerical simulations for internal-loop airlift reactors were performed using the transient Eulerian model with CFD package, ANSYS Fluent 12.1. The turbulence in the liquid phase is described using κ- ε the model. Global hydrodynamic parameters like gas holdup, gas velocity and liquid velocity have been investigated for a range of superficial gas velocities, both with 2D and 3D simulations. Moreover, the study of geometry and scale influence on the reactor have been considered. The results suggest that both, geometry and scale have significant effects on the hydrodynamic parameters, which may have substantial effects on the reactor performance. Grid refinement and time-step size effect have been discussed. Numerical calculations with gas-liquid-solid three-phase flow system have been carried out to investigate the effect of solid loading, solid particle size and solid density on the hydrodynamic characteristics of internal loop airlift reactor with different superficial gas velocities. It was observed that averaged gas holdup is significantly decreased with increasing slurry concentration. Simulations show that the riser gas holdup decreases with increase in solid particle diameter. In addition, it was found that the averaged solid holdup increases in the riser section with the increase of solid density. These produced results reveal that CFD have excellent potential to simulate two-phase and three-phase flow system.
Resumo:
Kandidaatintyössä luotiin CFD-malli mallintamaan jäähdytevirtausta kuulakekoreaktorin sydämessä käyttämällä Ansys Fluent -ohjelmaa. Mallin avulla tarkasteltiin virtauksen käyttäymistä ja painehäviötä ja saatuja tuloksia verrattiin aiempiin tutkimuksiin. Kandidaatin työssä on myös kerrottu mallintamisen etenemisestä ja laskentateoriaa.
Resumo:
As long as the incidence of stroke continues to grow, patients with large right hemisphere lesions suffering from hemispatial neglect will require neuropsychological evaluation and rehabilitation. The inability to process information especially that coming from the left side accompanied by the magnetic orientation to the ipsilesional side represents a real challenge for rehabilitation. This dissertation is concerned with crucial aspects in the clinical neuropsychological practice of hemispatial neglect. In studying the convergence of the visual and behavioural test batteries in the assessment of neglect, nine of the seventeen patients, who completed both the conventional subtests of the Behavioural Inattention Test and the Catherine Bergego Scale assessments, showed a similar severity of neglect and thus good convergence in both tests. However, patients with neglect and hemianopia had poorer scores in the line bisection test and they displayed stronger neglect in behaviour than patients with pure neglect. The second study examined, whether arm activation, modified from the Constraint Induced Movement Therapy, could be applied as neglect rehabilitation alone without any visual training. Twelve acute- or subacute patients were randomized into two rehabilitation groups: arm activation training or traditional voluntary visual scanning training. Neglect was ameliorated significantly or almost significantly in both training groups due to rehabilitation with the effect being maintained for at least six months. In studying the reflections of hemispatial neglect on visual memory, the associations of severity of neglect and visual memory performances were explored. The performances of acute and subacute patients with hemispatial neglect were compared with the performances of matched healthy control subjects. As hypothesized, encoding from the left side and immediate recall of visual material were significantly compromised in patients with neglect. Another mechanism of neglect affecting visual memory processes is observed in delayed visual reproduction. Delayed recall demands that the individual must make a match helped by a cue or it requires a search for relevant material from long-term memory storage. In the case of representational neglect, the search may succeed but the left side of the recollected memory still fails to open. Visual and auditory evoked potentials were measured in 21 patients with hemispatial neglect. Stimuli coming from the left or right were processed differently in both sensory modalities in acute and subacute patients as compared with the chronic patients. The differences equalized during the course of recovery. Recovery from hemispatial neglect was strongly associated with early rehabilitation and with the severity of neglect. Extinction was common in patients with neglect and it did not ameliorate with the recovery of neglect. The presence of pusher symptom hampered amelioration of visual neglect in acute and subacute stroke patients, whereas depression did not have any significant effect in the early phases after the stroke. However, depression had an unfavourable effect on recovery in the chronic phase. In conclusion, the combination of neglect and hemianopia may explain part of the residual behavioural neglect that is no longer evident in visual testing. Further research is needed in order to determine which specific rehabilitation procedures would be most beneficial in patients suffering the combination of neglect and hemianopia. Arm activation should be included in the rehabilitation programs of neglect; this is a useful technique for patients who need bedside treatment in the acute phase. With respect to the deficit in visual memory in association with neglect, the possible mechanisms of lateralized deficit in delayed recall need to be further examined and clarified. Intensive treatment induced recovery in both severe and moderate visual neglect long after the first two to first three months after the stroke.
Resumo:
The condensation rate has to be high in the safety pressure suppression pool systems of Boiling Water Reactors (BWR) in order to fulfill their safety function. The phenomena due to such a high direct contact condensation (DCC) rate turn out to be very challenging to be analysed either with experiments or numerical simulations. In this thesis, the suppression pool experiments carried out in the POOLEX facility of Lappeenranta University of Technology were simulated. Two different condensation modes were modelled by using the 2-phase CFD codes NEPTUNE CFD and TransAT. The DCC models applied were the typical ones to be used for separated flows in channels, and their applicability to the rapidly condensing flow in the condensation pool context had not been tested earlier. A low Reynolds number case was the first to be simulated. The POOLEX experiment STB-31 was operated near the conditions between the ’quasi-steady oscillatory interface condensation’ mode and the ’condensation within the blowdown pipe’ mode. The condensation models of Lakehal et al. and Coste & Lavi´eville predicted the condensation rate quite accurately, while the other tested ones overestimated it. It was possible to get the direct phase change solution to settle near to the measured values, but a very high resolution of calculation grid was needed. Secondly, a high Reynolds number case corresponding to the ’chugging’ mode was simulated. The POOLEX experiment STB-28 was chosen, because various standard and highspeed video samples of bubbles were recorded during it. In order to extract numerical information from the video material, a pattern recognition procedure was programmed. The bubble size distributions and the frequencies of chugging were calculated with this procedure. With the statistical data of the bubble sizes and temporal data of the bubble/jet appearance, it was possible to compare the condensation rates between the experiment and the CFD simulations. In the chugging simulations, a spherically curvilinear calculation grid at the blowdown pipe exit improved the convergence and decreased the required cell count. The compressible flow solver with complete steam-tables was beneficial for the numerical success of the simulations. The Hughes-Duffey model and, to some extent, the Coste & Lavi´eville model produced realistic chugging behavior. The initial level of the steam/water interface was an important factor to determine the initiation of the chugging. If the interface was initialized with a water level high enough inside the blowdown pipe, the vigorous penetration of a water plug into the pool created a turbulent wake which invoked the chugging that was self-sustaining. A 3D simulation with a suitable DCC model produced qualitatively very realistic shapes of the chugging bubbles and jets. The comparative FFT analysis of the bubble size data and the pool bottom pressure data gave useful information to distinguish the eigenmodes of chugging, bubbling, and pool structure oscillations.
Resumo:
Diplomityön tarkoituksena on luoda uraaniheksafluoridista käyttäjän määrittelemä aine kaupallisen virtauslaskentaohjelmiston (FLUENT) ainekirjastoon ja simuloida aineen käyttäytymistä sulaessa ja kiinteyttäessä. Työn kirjallisuusosassa on esitelty aiempia tutkimuksia uraaniheksafluoridin termodynaamisista ominaisuuksista, joita käytetään aineen määrittelyssä. Kokeellisessa osassa on käytetty virtauslaskentaohjelmiston Eulerilaista monifaasimallia sulamisen ja kiinteytymisen tarkasteluun kaksidimensionaalisessa sylinterissä.
Resumo:
Kandidaatintyössä tarkastellaan kaasujäähdytteistä nopeaa reaktoria, joka on yksi monista tulevaisuuden ydinvoimalaitosten konsepteista. Aluksi esitellään lyhyesti kaupalliset reaktorisukupolvet ja tulevan neljännen sukupolven tärkeimmät linjaukset. Teoriaosuudessa esitellään CFD-laskennan pääperiaatteet ja käsitellään hieman turbulenssin mallinnusta ja työssä käytettyä OpenFOAM-ohjelmistoa. Työhön liittyy CFD-laskenta, jossa polttoaineen virtauskanavan painehäviö lasketaan eri ripakonstruktioilla. Simulaatioiden perusteella pohditaan myös turbulenttisen virtauksen vaikutusta lämmönsiirron tehokkuuteen. Tarkkoja mittauksia ja CFDlaskentoja tarvitaan, jotta voidaan tehdä tarkkoja korrelaatioita painehäviöille ja lämmönsiirtokertoimille termohydrauliikan mallinnusohjelmia varten.
Resumo:
Fluid particle breakup and coalescence are important phenomena in a number of industrial flow systems. This study deals with a gas-liquid bubbly flow in one wastewater cleaning application. Three-dimensional geometric model of a dispersion water system was created in ANSYS CFD meshing software. Then, numerical study of the system was carried out by means of unsteady simulations performed in ANSYS FLUENT CFD software. Single-phase water flow case was setup to calculate the entire flow field using the RNG k-epsilon turbulence model based on the Reynolds-averaged Navier-Stokes (RANS) equations. Bubbly flow case was based on a computational fluid dynamics - population balance model (CFD-PBM) coupled approach. Bubble breakup and coalescence were considered to determine the evolution of the bubble size distribution. Obtained results are considered as steps toward optimization of the cleaning process and will be analyzed in order to make the process more efficient.
Resumo:
Novel word learning has been rarely studied in people with aphasia (PWA), although it can provide a relatively pure measure of their learning potential, and thereby contribute to the development of effective aphasia treatment methods. The main aim of the present thesis was to explore the capacity of PWA for associative learning of word–referent pairings and cognitive-linguistic factors related to it. More specifically, the thesis examined learning and long-term maintenance of the learned pairings, the role of lexical-semantic abilities in learning as well as acquisition of phonological versus semantic information in associative novel word learning. Furthermore, the effect of modality on associative novel word learning and the neural underpinnings of successful learning were explored. The learning experiments utilized the Ancient Farming Equipment (AFE) paradigm that employs drawings of unfamiliar referents and their unfamiliar names. Case studies of Finnishand English-speaking people with chronic aphasia (n = 6) were conducted in the investigation. The learning results of PWA were compared to those of healthy control participants, and active production of the novel words and their semantic definitions was used as learning outcome measures. PWA learned novel word–novel referent pairings, but the variation between individuals was very wide, from more modest outcomes (Studies I–II) up to levels on a par with healthy individuals (Studies III–IV). In incidental learning of semantic definitions, none of the PWA reached the performance level of the healthy control participants. Some PWA maintained part of the learning outcomes up to months post-training, and one individual showed full maintenance of the novel words at six months post-training (Study IV). Intact lexical-semantic processing skills promoted learning in PWA (Studies I–II) but poor phonological short-term memory capacities did not rule out novel word learning. In two PWA with successful learning and long-term maintenance of novel word–novel referent pairings, learning relied on orthographic input while auditory input led to significantly inferior learning outcomes (Studies III–IV). In one of these individuals, this previously undetected modalityspecific learning ability was successfully translated into training with familiar but inaccessible everyday words (Study IV). Functional magnetic resonance imaging revealed that this individual had a disconnected dorsal speech processing pathway in the left hemisphere, but a right-hemispheric neural network mediated successful novel word learning via reading. Finally, the results of Study III suggested that the cognitive-linguistic profile may not always predict the optimal learning channel for an individual with aphasia. Small-scale learning probes seem therefore useful in revealing functional learning channels in post-stroke aphasia.
Resumo:
Dignity is seen important in health care context but considered as a controversial and complex concept. In health care context, it is described as being influenced by for example autonomy, respect, communication, privacy and hospital environment. Patient dignity is related to satisfaction with care, reduced stress, better confidence in health services, enhanced patient outcomes and shorter stay in a hospital. Stroke patients may struggle for dignity as being dependent on other people has impact on the patients’ self-image. In all, stroke patients are very specific patient group and considered vulnerable from emotional aspect. Therefore study findings from other patient groups in the area of ethical problems cannot be transferred to the stroke patients. This master’s thesis consists of two parts. The first part is the literature review of patients’ dignity in hospital care. The literature defined dignity and described factors promoting and reducing it. The results were ambiguous and thus a clear understanding was not able to create. That was the basis for the second part of the master’s thesis, the empirical study. This part aimed to develop theoretical construction to explore the realization of stroke patients’ dignity in hospital care. The data of the second part was collected by interviewing 16 stroke patients and analyzed using the constant comparison of Grounded Theory. The result was ‘The Theory of Realization of Stroke Patients’ Dignity in Hospital Care’ which is described not only in this master’s thesis but also as a scientific article. The theory consists of the core category, four generic elements and five specific types on realization. The core category emerged as ‘dignity in a new situation’. After a stroke, dignity is defined in a new way which is influenced by the generic elements: life history, health history, individuality and a stroke. Stroke patient’s dignity is realized through five specific types on realization: person related dignity type, control related dignity type, independence related dignity type, social related dignity type and care related dignity type. The theory points out possible special characteristics of stroke patients’ dignity in control related dignity type and independence related dignity type. Before implementing the theory, the relation between the core category, generic elements and specific types on realization needs to be studied further.