35 resultados para Lämmönsiirto
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Kandidaatintyössä perehdytään ydinpolttoaineessa tapahtuvaan lämmönsiirtoon ja lämmönsiirron ilmiöihin. Lämmönsiirron tarkastelussa keskitytään erityisesti polttoainepelletissä tapahtuvaan lämmönsiirtoon, mutta työn edetessä esitellään myös lyhyesti lämmön siirtyminen polttoainepelletistä kaasunraon ja polttoainesauvan suojakuoren läpi jäähdytteeseen. Kandidaatintyössä tarkastellaan myös kiinteiden ydinpolttoaineiden lämmönsiirto-ominaisuuksia. Lämmönsiirto-ominaisuudet riippuvat materiaalien termodynaamisista ja kemiallisista ominaisuuksista. Lämmönsiirto-ominaisuuksien tunteminen on edellytys uusien, lämmönsiirrollisesti entistä parempien, polttoaineiden kehittämiselle.
Resumo:
Vanerin tai kertopuun valmistusprosessissaviilun kuivaukseen käytetään suurin osa koko valmistusprosessin primäärienergiasta. Viilunkuivauskoneessa viilun sisältämä vesi siirretään tyypillisesti prosessihöyryllä lämmitettyyn viilunkuivaajan kiertoilmaan höyrystämällä ja poistetaanviilunkuivaajasta poistoilman mukana. Viilunkuivaajan poistoilma on lämmintä jaerittäin suuren kosteuspitoisuutensa takia sisältää runsaasti energiaa. Tyypillisellä viilunkuivaajalla poistoilmaan sitoutunut lämpöteho vaihtelee prosessiolosuhteista riippuen välillä 2,7-5,7 MW. Diplomityössä tutkittiin viilunkuivaajan poistoilman sisältämän lämmön talteenottoa laitteistolla, johon kuuluu lämmöntalteenottopesuri, jossa poistoilmalla lämmitetään tuotantolaitoksen tukkipuun hautomon kiertovettä sekä ilma-ilma-lämmönsiirrin, jolla lämmitetään pesurista poistuvan ilman jäännöslämmöllä ulkoilmaa tehdassalin tuloilmakäyttöön. Työn tavoitteena oli kehittää lämmöntalteenottojärjestelmän suunnittelua, mitoitusta ja ajotapoja. Työssä analysoitiin teoreettisesti pesuria ja ilmalämmönsiirrintä, kehitettiin lämmöntalteenottopesurin simulointimenetelmä ja mitattiin toiminnassa olevia talteenottolaitteistoja. Tutkimuksessa todettiin lämmöntalteenottohyötysuhteen vaihtelevan lämmityskaudella välillä 50-70 %. Lämmöntalteenottolaitteiston pesurin veteen saatava teho riippuu ensisijaisesti viilunkuivaajan poistoilman lämpösisällöstä, joka on enimmäkseen kosteusriippuvainen ja ilmanvaihtoilmaan saatava teho ulkolämpö-tilan määräämästä tehontarpeesta. Pesurin vesijärjestelmän vaikutusmekanismit pesurin suorituskykyyn tunnistettiin ja niiden pohjalta annetaan suositukset mitoitukseen ja ajotapaan. Lämmöntalteenottolaitteiston lämpötehon tasapainottamiseen pesurin ja ilma-ilma-lämmönsiirtimen välillä mitoituksen avulla esitellään työkalut.
Resumo:
Diplomityön tarkoituksena on kehittää kolmiulotteinen malli kerrosleijupoltolle. Työn kirjallisuusosa sisältää seuraavat perusteet kerrosleijupolton tekniikasta: yleistiedot, leijutus- ja palamisilmiöt, kiinteän aineen ja kaasun sekoittuminen, päästöt ja lämmönsiirto. Lisäksi palamissysteemin mallinnuksen perusteet ja ratkaisumenetelmät ovat esitelty. Työn mallinnusosassa kehitetty koodi on ohjelmoitu Fortran-ohjelmointikielellä. Kehitetty malli perustuu olemassa olevaan malliin kiertoleijupoltosta. Yhtälö kiintoainekonsentraatioprofiilille on vaihdettu ja kiertovirta on poistettu koodista. Mallilla on tehty herkkyystarkasteluja polttoaineen ja kaasun sekoittumisen sekä reaktiokertoimen vaikutukselle. Visualisointi on tehty ohjelmassa Tecplot 360 ja mallinnustuloksia on vertailtu mitattuihin tuloksiin. Mallin laskemattulokset vastaavat hyvin mittaustuloksia ja kokemusperäisiä tietoja; monissa tapauksissa malli pystyy kvantitatiivisesti kuvaamaan parametrien variointia ja kaikissa tapauksissa malli antaa ainakin kvalitatiivisesti oikeita tuloksia. Työhön liittyvän kehityksen ja mallinnuskokemuksen perusteella on tehty ehdotukset mallin tulevaa kehitystä ja mittauksia varten.
Resumo:
Tämän diplomityön päämääränä on tehdä prosessiteollisuuden tarpeisiin Excel-taulukkolaskentaohjelmassa toimiva putkilämmönsiirtimen mitoitusohjelma. Prosessiteollisuudessa lämmönvaihtimien toimintaympäristöt ja olosuhteet vaihtelevat merkittävästi ja niinpä jokaisen vaihtimen suunnittelu ja mitoitus on toteutettava tapauskohtaisesti. Työssä käsitellään rekuperatiivisen ristivirtaputkilämmönvaihtimen yleinen lämpötekninen mitoitus sisältäen putken sisäpinnalle tapahtuvan mahdollisen lauhtumisen. Mitoitettava vaihdinkoostuu pystysuorista putkista, joissa lämmin ja kostea ilma virtaa putkien sisäpuolella ja kylmä kuiva ilma vaippapuolella vaakasuoraan. Vaihdinmateriaalina käytetään ruostumatonta AISI 304 -tai haponkestävää AISI 316 terästä. Kuuman ilman tila vaihtelee tarkasteltavan kohteen mukaan. Paperiteollisuuden kuivausyksiköiltä poistuva ilma on usein lämmintä ja kosteaa, ja infrakuivaimilta poistuva ilma on kuumaa. Mitoitettavalle lämmönvaihtimelle tulevan kuuman ilman lämpötila tapauksesta riippuen voi vaihdella 30°C, maksimissaan +300°C:een saakka, vesisisällön ollessa välillä 0,010...0,200 kg/kg ki tai jopa tämän ylikin. Vaihtimen mitoitus perustuu energiataseyhtälöiden käyttöön. Laskennassa määritetään vaihtimen pintalämpötila sekä mahdollinen kostean ilman lauhtuminen putken sisäpinnalle. Lisäksi teoria käsittää molempien virtausten tilanmuutosten laskennan. Työssä on esitetty esimerkkilaskelma, jossa on laskettu ilma- kostea ilma lämmönsiirrinkonstruktio. Esimerkissä on tarkasteltu vaihtimen hyötysuhdetta, virtausten lämpö- ja kosteuskäyttäytymistä ulkoilman lämpötilan funktiona. Ohjelmasta saadaan tulostettua mitoitettavanvaihtimen dimensiot; putkien lukumäärät syvyys- ja pituussuunnassa sekä kokonaisputkilukumäärä, putkien väliset etäisyydet toisiinsa nähden sekä syvyys, että pituussuunnassa, putkipituus ja putken sisä- ja ulkohalkaisijat. Nämä tiedot suunnittelija itse syöttää ohjelmalle alkuarvoina. Laskettuna tietona ohjelma antaa molempien virtausten poistolämpötilat, kuuman ilman poistuvan absoluuttisen kosteuden, kondenssivesimäärän, vaihtimen tehon ja painehäviöt vaippa- ja putkipuolelle. Lisäksi ohjelma laskee kuuman ilman ominaisentalpiat vaihtimen sisään- ja ulostulossa. Tämä mahdollistaa ilman tilapisteiden piirtämisen Mollier-piirrokseen.
Resumo:
Työn tavoitteena on laatia käsikirjamainen läpileikkaus levylämmönsiirtimen rakenteesta ja käytöstä lämpöpumppulaitteistoissa. Kylmäprosessin tarkastelun lisäksi on eri lähteistä haettu yhtälöitä lämmönsiirron ja painehäviönlaskentaan. Lähdeaineistona on käytetty lämmönsiirron oppikirjoja, joiden lisäksi on käyty läpi suuri joukko tieteellisen tutkimuksen julkaisemia tutkimusraportteja levylämmönsiirtimen mitoituksesta erilaisissa käyttökohteissa. Oppikirjoissa ei ole esitetty varsinaisesti levylämmönsiirtimen laskentamenetelmiä, vaan niissä esitetään lämmönsiirron perusyhtälöt. Varsinainen lämmönsiirtolevyprofiilin laskentaan perustuva lähdeaineisto on löytynyt lämmönsiirtoon erikoistuneista julkaisuista. Lämmönsiirto tapahtuu aina kuumemmasta kylmempään tilaan. Lämmönsiirto eri virtausaineiden välillä toteutetaan lämmönsiirtimien avulla. Lämmönsiirrintyyppejä on olemassa lukuisia, joista yksi yleisesti käytetty tyyppi on levylämmönsiirrin. Tässä konstruktiossa on mahdutettu paljon lämmönsiirtopintaa ulkomitoiltaan pieneen tilaan. Tämä siirrintyyppi on eduksi silloin, kun virtaavat aineet ovat puhtaita ja niillä ei ole likaavaa vaikutusta lämmönsiirtopinnoille. Lämpöpumpulla tarkoitetaan laitetta, jolla voidaan käyttää hyödyksi lämmönlähteen matalaa lämpötilatasoa nostamalla lämpötilatasoa kompressorin puristustyön avulla korkeampaan lämpötilatasoon. Lämpöpumppulaitteiston toiminta perustuu kylmäprosessin toimintaan. Kylmäprosessin läpikäynti auttaa lukijaa hahmottamaan, millainen prosessi on kysymyksessä ja mitä komponentteja liittyy kylmäprosessiin. Tässä diplomityössä esitetyt yhtälöt antavat suuntaa, millä tavalla levylämmönsiirtimien ominaisuuksia voidaan laskea ja mitkä tekijät vaikuttavat siirtimien mitoittamiseen. Tarkemmat vaihdinkohtaiset laskentakorrelaatiot muotoutuvat vasta sitten, kun valmis tuote on testattu laboratorio-olosuhteissa ja siitä on saatu lämpötila-, virtaus- ja painesuhteet selville. Tämän jälkeen voidaan mittaustuloksiin perustuen rakentaa matemaattinen malli, jolla laskennallisesti määritelläänvaihtimien ominaisuudet. Lisäksi on esitetty yleisiä tapoja, joilla voidaan määritellä lämmönsiirtimien lämpöpintoja.
Resumo:
Kivihiokkeen valmistus on energiaintensiivistä. Käytetystä energiasta muuttuu yli 90 prosenttia lämmöksi. Hiomolla käytetystä lämmöksi muuttuneesta tehosta voidaan paperikoneelle siirtää noin puolet. Mekaanisen massan valmistuksen ja paperikoneen vesikierrot erotetaan toisistaan häiriöaineiden kulkeutumisen estämiseksi. Vesikiertojen erottamisella katkaistaan myös lämmön siirtyminen hiomolta paperikoneelle massojen mukana. Käyttämällä lämmönsiirtimiä hiomon vesien jäähdytyksessä, voidaan hiomon hiomakoneiden suihkuvesivesilämpötilaa alentaa. Lämmönsiirto vaikuttaa paperikoneella annostelumassojen laimennusten kautta perälaatikkolämpötilaa kohottavasti. Työn tehtäväksi määritettiin kesäkuukausina esiintyvä hiomakoneiden suihkuveden raakavesijäähdytyksen tarpeen poistaminen ensisijaisesti niin, että ylimäärälämpö hyödynnetään tehtaalla. Työn muiksi tavoitteiksi muodostui annostelumassojen lämpötilan hallinta, etenkin muutokset, joilla voidaan nostaa hylkymassan annostelulämpötilaa. Työn kokeellinen osa tehtiin UPM Kymmene Oyj Kajaanin tehtailla syksyn 2004 aikana. Työssä tutkittiin WinGEMS simulointiohjelmalla tehtyjen mallien avulla lämmön siirtymistä hiomon ja paperikone 2:n välillä, sekä lämmönsiirtoa pois tasealueelta. Simulointimalli nykytilanteesta rakennettiin yksityiskohtaisesti nykyisen tuotantoprosessin kaltaiseksi ja siitä muokattiin eri vaihtoehtoja, joilla ratkaistiin tutkimukselle asetetut tehtävät. Kytkentämuutoksilla pystyttiin siirtämään hiomolta yli 85 % hiomakoneiden suihkuveden ylimäärälämmöstä ilman uusia laitehankintoja. Asentamalla lopuksi lämmönsiirrin hiomon puhdassuodoslinjaan, hiomakoneiden suihkuveden jäähdytystarve poistettiin kokonaan. Samalla alennettiin valkaisuun menevän massan lämpötilaa, jolloin peroksidivalkaisun kemikaalikulutus väheni yli 10 %. Lämmönsiirrinverkostosta tehtiin kesätilanteen pinch-analyysi, jolla selvitettiin prosessin lämmitys ja jäähdytystarpeet. Analyysin perusteella selvisi, että kytkennöissä ei rikota pinch sääntöjä ja, että prosessissa esiintyy kynnysongelma, jossa prosessi tarvitsee ainoastaan jäähdytystä.
Resumo:
Työn tavoitteena oli tutkia aaltomaisen profiloinnin vaikutusta suorien jäähdytyskanavien lämmönsiirtoon ja painehäviöön. Erilaisia profiileja oli kymmenen kappaletta ja ne olivat 5mm leveitä ja 30cm pitkiä kukin. Ne laskettiin kolmeulotteisina tapauksina FINFLO-virtausratkaisijalla kolmella eri Reynoldsin luvulla, jotka vastasivat laminaarista, osittain turbulenttista ja lähes kokonaan turbulenttista virtausta. Lämmönsiirtoaine oli kuiva +30°C ilma ja profiloinnin toteutustapa oli toisiaan sivuavat ympyräkaaret kolmella erilaisella säteen arvolla ja kolmella erilaisella aallonpituuden arvolla. Lisäksi laskettiin saman levyisen tasokanavan arvot jokaisella Reynoldsin luvulla kaksiulotteisina tapauksina. Näitä profiloimattomia kanavia pidettiin referenssitapauksina. Tuloksena havaittiin että profiloimalla saadaan yksiselitteisesti suurempi lämpöteho ulos samasta tilavuudesta. Lämmönsiirtokerroin kasvaa profiloinnin avulla parhaimmillaan n. 20% käytetystä turbulenssimallista tai lämmönsiirtokertoimen määritelmästä riippumatta. Painehäviö kasvaa myös aina, mutta kitkakerroin voi hieman pienentyä. Profiilin varsinaisena hyvyyskriteerinä pidettiin lämmönsiirtokertoimen ja kitkakertoimen suhdetta h/f. Se osoittautui riippuvaksi Reynoldsin luvusta ja turbulenssimallista; ASM ja Chien k-έ -mallit ennustavat transitioetäisyyden eri tavalla. Laminaarisilla virtauksilla h/f :n vaihtelu oli vähäistä; suhde vaihteli vain ±5% eri profiilien kesken. ASM-mallilla havaittiin sekundääripyörteilyä, ehkä siksi että se mallintaa anisotrooppisen turbulenssin. Chien k-έ malli ennusti suuremman ja aikaisemmin alkavan turbulenttisuuden kuin ASM. Lisäksi havaittiin mm. että tietyillä profiileilla muodostuu kanavan kapeimpaan kohtaan selvä virtausnopeuden paikallinen minimi seinämän läheisyyden takia.
Resumo:
Diplomityön tavoitteena oli tutkia kerrostumien muodostumista voimalaitoskattiloiden lämpöpinnoille ja niiden vaikutusta lämmönsiirtoon. Kerrostumien vaikutusta lämpöpintojen lämpötiloihin tutkittiin kerrostumasondin avulla kierto- ja kerrosleijukattiloissa. Saadun mittausaineiston muodostettiin mittaustilannetta vastaava laskentamalli, jonka avulla pystytään selvittämään voimalaitoksen lämpöpintojen likaantumista käyttöperiodin aikana. Työn alussa tarkasteltiin kerrostumien muodostumismekanismeja lämmönsiirtopinnoille, kerrostumien ominaisuuksia ja virtausympäristön vaikutusta lämmönsiirtoon. Poltossa syntyvä tuhka kiinnittyy eri mekanismeilla kattilan seinille ja lämpöpinnoille riippuen polttoaineesta ja ympäröivistä olosuhteista. Likakerrosten muodostuminen lämmönsiirtimen pinnalle pienentää putkeen siirtyvää lämpövirtaa ja alentaa kattilan hyötysuhdetta. Kerrostumien lämmönjohtumisesta ja mikrorakenteesta on hyvin vähän kokeellisen tietoa, mikä vaikeuttaa reaalisten mallien muodostamista kattilan käyttäytymisestä sen likaantuessa.Työn kokeellisessa osassa tarkasteltiin kahdella eri kattilalla tehtyjä mittauksia. Mittaukset tehtiin kerrostumasondilla, jonka lämmönsiirrosta luotiin laskentamalli SIMULINK-simulointiohjelmalla. Mittaustuloksina saatiin kolmen eri pinnan lämpötilat, jotka muuttuivat kerrostuman ja jäähdytyksen vaikutuksesta. Laskentamallista muokattiin mittaustilanteita vastaava, jolloin lämpötilamuutoksista nähdään likakerroksen ominaisuuksien vaikutus lämmönsiirtoon. Sondista muodostettiin myös FLUENT-malli, jolla tarkasteltiin yksittäisen putken virtauskenttää sekä kahden lähekkäin olevan putken vaikutusta virtaukseen.
Resumo:
Tämä diplomityö on osa projektia, joka tähtää ylikriittisellä painealueella toimivan läpivirtaustekniikkaan perustuvan kiertoleijukattilan toteuttamiseen. Diplomityössä määritetään mittausten perusteella vaaka- ja pystysuuntaisia lämmönsiirtoprofiileja kaupallisen kiertoleijukattilan tulipesässä. Lisäksi samaisen kattilan tulipesä mallinnetaan ja mallin parametrejä säädetään niin, että mallin tulokset saadaan vastaamaan mitattuja tuloksia mahdollisimman hyvin. Työn tavoitteena on antaa lisätietoa tulipesässä vapautuvan lämpötehon jakautumisesta tulipesän eri osien kesken. Diplomityön kirjallisuuskatsauksessa käsitellään kiertoleijukattilan tulipesän perusilmiöitä kuten leijutusta, lämmönsiirtoa, hydrodynamiikkaa ja palamista sekä tutustutaan muutamiin tulipesämalleihin. Lisäksi tarkastellaan ylikriittisen läpivirtauskattilan tarjoamia etuja perinteisiin kattilaratkaisuihin nähden. Diplomityössä on myös esitelty työhön liittyvä mittausprojekti.
Resumo:
Tulisijojen tekniikkaan kohdistuu yhä kovempia vaatimuksia sekä kuluttajien että myös erityisesti viranomaismääräysten suunnalta. Tämän työn tarkoituksena on osaltaan luoda pohjaa näiden vaatimusten täyttämiselle. Työn tavoitteena oli määrittää lämmönsiirtokerroin tyypillisen vuolukivirakenteisen tulisijan poskikanavassa savukaasun ja kanavan seinämän välillä. Työ koostuu mittauslaitteen suunnittelusta, käytännön mittauksista ja mittaustulosten analysoinnista teoriaan verrattuina. Työ pohjautuu käytännön mittauksiin kahdella koeuunilla. Mittaukset kohdistuivat uunien poskikanavissa ja poskikanavan seinämissä tapahtuviin lämpötilamuutoksiin. Toisessa koeuunissa mitattiin myös poskikanavan savukaasun lämpötilajakauma. Mittauksilla saatua sekä teoreettisesti määritettyä lämpötilajakaumaa verrattiin toisiinsa. Lämmönsiirtokertoimet määritettiin lämpötilojen ja savukaasun massavirran perusteella. Tuloksena saatiin paikalliset sekä yleispätevät lämmönsiirtokertoimet savukaasun lämpötilan funktiona.
Resumo:
Työssä tutkittiin Andritz-Ahlstrom toimittamien soodakattiloiden lämmönsiirtoa ANITA 2.20- suunnitteluohjelmalla feedback- laskentaa apuna käyttäen. Data laskentaan saatiin kattiloiden takuukokeissa mitatuista arvoista. Mittaukset on suoritettiin Andritz-Ahlstromin henkilökunnan toimesta tehdashenkilökunnan avustuksella. Feedback -laskenta tapahtui mittaustulosten perusteella, joten tiettyä virhettä luonnollisesti esiintyi. Aluksi laskettiin taseet molempien ekojen yli erikseen sekä molemmat yhdessä Excel-taulukkolaskentaohjelmalla. Täältä saatiin oletettu savukaasuvirtaus kattilassa. Tämän jälkeen lämpöpintoja muokattiin todellisuutta vastaaviksi yleislikaisuuskerrointa muuttamalla (overall fouling factor). Kertoimet ovat liikkuivat noin 0.4 ja 1.6 välillä riipuen kattilan tyypistä ja ANITAn oletuksesta lämpöpintojen likaisuudelle. Havaittin että yhtä varsinaista syytä lämpöpintojen eroavaisuuteen oletetusta ei saatu. Syitä toiminnan poikkeamiseen oli monia. Mm. etukammion koolla havaittiin olevan suurtakin vaikutusta tulistimien, etenkin savukaasuvirrassa ensimmäisen tulistimen toimintaan. Yleisesti todettiin muiden tulistimien vastaavan oletettua toimintaa. Keittopinnan ja ekonomiserien toimintaa tutkittiin hivenen suppeammin ja havaittiin niiden toimivan huomattavasti stabiilimmin kuin tulistimien. Likaisuus kertoimet oletetusta vaihtelivat noin ±20 %.
Resumo:
Työssä on käsitelty fluidien aineominaisuuksien vaikutuksia paperikoneiden kuivatusosissa käytettävien lämmönsiirtimien lämpöteknisessä simuloinnissa. Pääkohteena selvitettiin kostean ilman ja veden fysikaalisien aineominaisuuksien mallinnustarkkuuden vaikutuksia lämpövirtaan lauhduttamattomissa ja lauhduttavissa tapauksissa. Asiaa tutkittiin tekemällä herkkyysanalyysi työssä kehitetyille termodynaamisille malleille. Perinteisen herkkyysanalyysin lisäksi herkkyyksiä tutkittiin myös Bayesiläisellä tilastoanalyysillä. Työssä käsiteltiin myös aineominaisuuksien käyttäytymistä ja mallintamista lämmönsiirtimissä. Kirjallisuudesta etsittiin aineominaisuusmallit, joilla kostean ilman ja veden fysikaalisia aineominaisuuksia voidaan kuvata riittävän tarkasti. Työssä havaittiin, että yksittäisistä aineominaisuuksista selkeästi suurimmat vaikutukset on ominaisentalpioiden mallinnuksen epätarkkuuksilla. Myös kaikkien aineominaisuuksien epätarkkuuksilla havaittiin olevan huomattavan suuret yhteisvaikutukset lämpövirran laskentatarkkuuteen. Viiden prosentin epätarkkuus kaikkien aineominaisuuksien mallinnuksessa johtaa 3 - 7 %:n epätarkkuuteen lämpövirran laskennassa. Näin ollen kaikkien aineominaisuuksien mallintamiseen tulee kiinnittää huomiota.
Resumo:
Tälle diplomityölle on antanut alkusysäyksen tarve kehittää käytössä olevaa meesauunin simulointiohjelmaa. Simulointiohjelma mallintaa meesauunin stationaaritilan toimintaa. Sillä voidaan tutkia uunin konstruktion muutosten vaikutuksia uunin toimintaan. Ohjelma on tehty 1980-luvun alkupuolella. Sen aikaisten tietokoneiden laskentatehojen vuoksi ohjelman käyttämään laskentamalliin on jouduttu tekemään joukko erilaisia yksinkertaistuksia laskenta-ajan lyhentämiseksi. Tässä diplomityössä keskityttiin tutkimaan meesauunin polttovyöhykkeen lämmönsiirron ja palamisen mallinnusta. Työssä luotiin aluksi tarvittavat massa- ja energiataseet sekä esitettiin tarvittavat lämmönsiirtoyhtälöt. Sen jälkeen kehitettiin uusi polttoaineen 1D-palamismalli. Palamismalli tehtiin VTT:n tekemien 3D-mallinnusten perusteella. Polttoaineina käytettiin maakaasua ja polttoöljyä. Uusi palamismalli lisättiin simulointiohjelmaan. Lisäksi simulointiohjelmasta muutettiin savukaasun emissiviteetin laskenta ja lämmönsiirto uunin ulkopinnasta ympäristöön. Tuloksena saatiin aikaan uusi tarkempi kuvaus lämmönsiirrosta ja palamisesta meesauunissa.
Resumo:
Tämä työ on toinen osa laajempaa energiatekniikan osastolla meneillään olevaa kaasunpolton tutkimusprojektia, jossa on tarkoituksena tutkia kaasunpolttotekniikoita. Ensimmäisessä vaiheessa projektissa perehdyttiin kaasunpolton mittaustekniikkaan. Seuraavassa vaiheessa suunnitellaan regeneratiivisen kaasunpolton laitteisto. Työssä perehdytään maakaasun ja vedyn seospolttoon maakaasun polttoon tarkoitetulla vakiopolttimella. Työssä keskityttiin tarkastelemaan muutoksia kaasuseoksen syttyvyydessä, liekin muodostuksessa, liekin pituudessa, lämmönsiirrossa, päästöissä ja poltinpään lämpörasituksessa. Työssä tarvittavat mittaukset suoritettiin LTY:n voimalaitostekniikan laboratorioon rakennetulla kaasunpolttolaitteistolla. Liekki- ja syttyvyystutkimus suoritettiin läpinäkyvällä kammiolla, josta saatujen tulosten perusteella tehtiin varsinaisessa polttolaitteistossa tehtävät lämmönsiirto- ja päästömittaukset. Työssä selvitetään, paljonko vetyä voidaan sekoittaa maakaasuun tekemättä muutoksia polttimelle. Työn alkuosassa on kaasunpolton teoriaa seospolttoon liittyen ja vertailua aiempiin seospolton tutkimustuloksiin kaasuturbiineissa. Pääpaino työssä on mittauksilla ja niiden analysoinnilla.
Resumo:
Numeerisella mallinnuksella on tavoitteena täydentää ja korvata kokeellista tutkimusta. Tässä tutkimuksessa on mallinnettu CFX 4.1- ja CFX 4.2-ohjelmien avulla lämmönsiirtoa putken sisäpinnalla. Virtausaineena putkessa on käytetty vettä ja vesi-monopropyleeniglykoliliuosta. Tarkasteltujen virtaustapausten Reynoldsin luku vaihtelee 200 - 30000. Kun glykolipitoisuus on suuri ja liuoksen lämpötila on pieni virtaus on laminaarista ja tällöin lämmönsiirtymiskerroin on pieni. Lämmönsiirron tehostamiseksi putkeen on asennettu turbulaattorilanka. Työssä on selvitetty edellytyksiä mallintaa hydraulisesti sileässä putkessa tapahtuvaa virtausta. Reynoldsin luvun ollessa alle 2300 mallinnuksessa on käytetty laminaarimallia. Reynoldsin luvuilla 2300-30000, turbulenttisella alueella, on käytetty pienten Reynoldsin luvun k-ɛ-mallia. Malli vaatii toimiakseen tiheän laskentaverkon putken seinämän läheisyydessä. Tarkastellulla alueella virtauksen ja lämmönsiirron mallinnuksen tulokset ovat vastaavat kuin teorian perusteella lasketut ja kokeellisista mittauksista saatavat tulokset. Lämmönsiirron tehostamiseksi putkeen on asennettu turbulaattorilanka. Tässä työssä on numeerisin menetelmin (pienten Reynoldsin luvun k-ɛ-malli ja k-ɛ-malli) suoritettu laskentaa yhdellä turbulaattorilankarakenteella. Laskennan vertailuaineistona on käytetty aikaisemmasta kokeellisesta tutkimuksesta saatua mittausdataa. Kokeellisessa tutkimuksessa turbulaattorirakenteena on käytetty putken seinämällä kiertyvää turbulaattorilankaa. Todellinen kolmiulotteinen geometria osoittautui vaikeaksi mallintaa. Toimivaa mallia ei ollut mahdollista toteuttaa aikataulun puitteissa ja mallin laskentakapasiteetin tarve kasvoi liian suureksi. Lankarakenne yksinkertaistettiin tasavälein toistuvaksi riparakenteeksi, joka on helpompi mallintaa aksisymmetriaa käyttäen kaksiulotteisena. Mallin tuloksista painehäviö asettuu kirjallisuudesta saatavan vertailuaineiston kanssa samalle tasolle, mutta lämmönsiirtymiskerroin on vertailuaineistoa huomattavasti suurempi.