1 resultado para Knowledge Exchange

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the ever-growing amount of connected sensors (IoT), making sense of sensed data becomes even more important. Pervasive computing is a key enabler for sustainable solutions, prominent examples are smart energy systems and decision support systems. A key feature of pervasive systems is situation awareness which allows a system to thoroughly understand its environment. It is based on external interpretation of data and thus relies on expert knowledge. Due to the distinct nature of situations in different domains and applications, the development of situation aware applications remains a complex process. This thesis is concerned with a general framework for situation awareness which simplifies the development of applications. It is based on the Situation Theory Ontology to provide a foundation for situation modelling which allows knowledge reuse. Concepts of the Situation Theory are mapped to the Context Space Theory which is used for situation reasoning. Situation Spaces in the Context Space are automatically generated with the defined knowledge. For the acquisition of sensor data, the IoT standards O-MI/O-DF are integrated into the framework. These allow a peer-to-peer data exchange between data publisher and the proposed framework and thus a platform independent subscription to sensed data. The framework is then applied for a use case to reduce food waste. The use case validates the applicability of the framework and furthermore serves as a showcase for a pervasive system contributing to the sustainability goals. Leading institutions, e.g. the United Nations, stress the need for a more resource efficient society and acknowledge the capability of ICT systems. The use case scenario is based on a smart neighbourhood in which the system recommends the most efficient use of food items through situation awareness to reduce food waste at consumption stage.