2 resultados para Klebsiella pneumoniae genome sequence

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the introduction of antibiotic agents, the amount and prevalence of Beta-lactam resistant enterobacteria has become an increasing problem. Many enterobacteria are opportunistic pathogens that easily acquire resistance mechanisms and genes, which make the situation menacing. These bacteria have acquired resistance and can hydrolyse extended spectrum cephalosporins and penicillins by producing enzymes called extended-spectrum Beta-lactamases (ESBLs). ESBL-producing bacteria are most commonly found in the gastro-intestinal tract of colonised patients. These resistant strains can be found in both health-care associated and community-acquired isolates. The detection and treatment of infections caused by bacteria producing ESBLs are problematic. This study investigated the genetic basis of extended-spectrum Beta-lactamases in Enterobacteriaceae, especially in Escherichia coli and Klebsiella pneumoniae isolates. A total of 994 Finnish Enterobacteriaceae strains, collected at 26 hospital laboratories, during 2000 and 2007 were analysed. For the genetic basis studies, PCR, sequencing and pyrosequencing methods were optimised. In addition, international standard methods, the agar dilution and disk diffusion methods were performed for the resistance studies, and the susceptibility of these strains was tested for antimicrobial agents that are used for treating patients. The genetic analysis showed that blaCTX-M was the most prevalent gene among the E. coli isolates, while blaSHV-12 was the most common Beta-lactamase gene in K. pneumoniae. The susceptibility testing results showed that about 60% of the strains were multidrug resistant. The prevalence of ESBL-producing isolates in Finland has been increasing since 2000. However, the situation in Finland is still much better than in many other European countries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lichens are symbiotic organisms, which consist of the fungal partner and the photosynthetic partner, which can be either an alga or a cyanobacterium. In some lichen species the symbiosis is tripartite, where the relationship includes both an alga and a cyanobacterium alongside the primary symbiont, fungus. The lichen symbiosis is an evolutionarily old adaptation to life on land and many extant fungal species have evolved from lichenised ancestors. Lichens inhabit a wide range of habitats and are capable of living in harsh environments and on nutrient poor substrates, such as bare rocks, often enduring frequent cycles of drying and wetting. Most lichen species are desiccation tolerant, and they can survive long periods of dehydration, but can rapidly resume photosynthesis upon rehydration. The molecular mechanisms behind lichen desiccation tolerance are still largely uncharacterised and little information is available for any lichen species at the genomic or transcriptomic level. The emergence of the high-throughput next generation sequencing (NGS) technologies and the subsequent decrease in the cost of sequencing new genomes and transcriptomes has enabled non-model organism research on the whole genome level. In this doctoral work the transcriptome and genome of the grey reindeer lichen, Cladonia rangiferina, were sequenced, de novo assembled and characterised using NGS and traditional expressed sequence tag (EST) technologies. RNA extraction methods were optimised to improve the yield and quality of RNA extracted from lichen tissue. The effects of rehydration and desiccation on C. rangiferina gene expression on whole transcriptome level were studied and the most differentially expressed genes were identified. The secondary metabolites present in C. rangiferina decreased the quality – integrity, optical characteristics and utility for sensitive molecular biological applications – of the extracted RNA requiring an optimised RNA extraction method for isolating sufficient quantities of high-quality RNA from lichen tissue in a time- and cost-efficient manner. The de novo assembly of the transcriptome of C. rangiferina was used to produce a set of contiguous unigene sequences that were used to investigate the biological functions and pathways active in a hydrated lichen thallus. The de novo assembly of the genome yielded an assembly containing mostly genes derived from the fungal partner. The assembly was of sufficient quality, in size similar to other lichen-forming fungal genomes and included most of the core eukaryotic genes. Differences in gene expression were detected in all studied stages of desiccation and rehydration, but the largest changes occurred during the early stages of rehydration. The most differentially expressed genes did not have any annotations, making them potentially lichen-specific genes, but several genes known to participate in environmental stress tolerance in other organisms were also identified as differentially expressed.