6 resultados para Key to species

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kirjallisuusarvostelu

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Corporate social responsibility or CSR is today a widely recognized concept which is receiving in- creasing popularity extremely rapidly, especially in the business world. The pressure on companies to carry out their business practices in ethical manners, which promote the wellbeing of the environment and society, is coming from all directions and all stakeholders. Alstom, a French multinational conglomerate operating in the rail transport and energy industry, is no exception to this norm. This company, which will be used as the case example in this thesis, is being brought to bay in terms of engaging in CSR practices and practicing business with high ethics. It is surely not a negatively conceived phenomenon that CSR is being put on a pedestal – quite the opposite. Instead of corporations practicing CSR only to meet their stakeholder requirements through practicing window dressing, many corporations actually strive to benefit from the practice of corporate social business. In addition to bringing benefit to externals a corporation such as Alstom itself can benefit from being involved in CSR. The purpose of this thesis is to evaluate the current strategic values and the future perspectives of CSR at Alstom and moreover the added value which the practice of CSR could bring Alstom as a business. A set of perspectives from a futures studies viewpoint is looked at, with critical examination of the company’s current corporate practices as well as the CSR related studies and theories written for corporations. Through this, some solutions and practices will be suggested to Alstom in order for it to fully utilize the potential of corporate social business and the value it can bring in the most probable futures that the company is expected to face. By utilizing the Soft Systems Methodology (SSM), a method mainly used in organizations to solve problematic issues in management and policy contexts, a process is developed to see what improvements could be of help in improving Alstom and its way towards involving CSR in its business practices even more than it currently does. Alstom is already deeply involved in the practicing of CSR and its vision has a strong emphasis on this popular concept of today. In order to stay in the game and to use CSR as a competitive advantage to the company, Alstom ought to embed corporate social practices even deeper in its organizational culture by using them as a tool to reduce risk and costs, increasing employee commitment and customer loyalty and to attract socially responsible investors, just to name a few. CSR as a concept is seen to have great potential in the future, an opportunity Alstom will not miss.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Logistics management is increasingly being recognised by many companies to be of critical concern. The logistics function includes directly or indirectly many of the new areas for achieving or maintaining competitive advantage that companies have been forced to develop due to increasing competitive pressures. The key to achieving a competitive advantage is to manage the logistics function strategically which involves determining the most cost effective method of providing the necessary customer service levels from the many combinations of operating procedures in the areas of transportation, warehousing, order processing and information systems, production, and inventory management. In this thesis, a comprehensive distribution logistics strategic management process is formed by integrating the periodic strategic planning process with a continuous strategic issues management process. Strategic planning is used for defining the basic objectives for a company and assuring co operation and synergy between the different functions of a company while strategic issues management is used on a continuous basis in order to deal with environmental and internal turbulence. The strategic planning subprocess consists of the following main phases: (1) situational analyses, (2) defining the vision and strategic goals for the logistics function, (3) determining objectives and strategies, (4) drawing up tactical action plans, and (5) evaluating the implementation of the plans and making the needed adjustments. The aim of the strategic issues management subprocess is to continuously scan the environment and the organisation for early identification of the issues having a significant impact on the logistics function using the following steps: (1) the identification of trends, (2) assessing the impact and urgency of the identified trends, (3) assigning priorities to the issues, and (4) planning responses to the, issues. The Analytic Hierarchy Process (AHP) is a systematic procedure for structuring any problem. AHP is based on the following three principles: decomposition, comparative judgements, and synthesis of priorities. AHP starts by decomposing a complex, multicriteria problem into a hierarchy where each level consists of a few manageable elements which are then decomposed into another set of elements. The second step is to use a measurement methodology to establish priorities among the elements within each level of the hierarchy. The third step in using AHP is to synthesise the priorities of the elements to establish the overall priorities for the decision alternatives. In this thesis, decision support systems are developed for different areas of distribution logistics strategic management by applying the Analytic Hierarchy Process. The areas covered are: (1) logistics strategic issues management, (2) planning of logistic structure, (3) warehouse site selection, (4) inventory forecasting, (5) defining logistic action and development plans, (6) choosing a distribution logistics strategy, (7) analysing and selecting transport service providers, (8) defining the logistic vision and strategic goals, (9) benchmarking logistic performance, and (10) logistic service management. The thesis demonstrates the potential of AHP as a systematic and analytic approach to distribution logistics strategic management.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Genetic diversity is one of the levels of biodiversity that the World Conservation Union (IUCN) has recognized as being important to preserve. This is because genetic diversity is fundamental to the future evolution and to the adaptive flexibility of a species to respond to the inherently dynamic nature of the natural world. Therefore, the key to maintaining biodiversity and healthy ecosystems is to identify, monitor and maintain locally-adapted populations, along with their unique gene pools, upon which future adaptation depends. Thus, conservation genetics deals with the genetic factors that affect extinction risk and the genetic management regimes required to minimize the risk. The conservation of exploited species, such as salmonid fishes, is particularly challenging due to the conflicts between different interest groups. In this thesis, I conduct a series of conservation genetic studies on primarily Finnish populations of two salmonid fish species (European grayling, Thymallus thymallus, and lake-run brown trout, Salmo trutta) which are popular recreational game fishes in Finland. The general aim of these studies was to apply and develop population genetic approaches to assist conservation and sustainable harvest of these populations. The approaches applied included: i) the characterization of population genetic structure at national and local scales; ii) the identification of management units and the prioritization of populations for conservation based on evolutionary forces shaping indigenous gene pools; iii) the detection of population declines and the testing of the assumptions underlying these tests; and iv) the evaluation of the contribution of natural populations to a mixed stock fishery. Based on microsatellite analyses, clear genetic structuring of exploited Finnish grayling and brown trout populations was detected at both national and local scales. Finnish grayling were clustered into three genetically distinct groups, corresponding to northern, Baltic and south-eastern geographic areas of Finland. The genetic differentiation among and within population groups of grayling ranged from moderate to high levels. Such strong genetic structuring combined with low genetic diversity strongly indicates that genetic drift plays a major role in the evolution of grayling populations. Further analyses of European grayling covering the majority of the species’ distribution range indicated a strong global footprint of population decline. Using a coalescent approach the beginning of population reduction was dated back to 1 000-10 000 years ago (ca. 200-2 000 generations). Forward simulations demonstrated that the bottleneck footprints measured using the M ratio can persist within small populations much longer than previously anticipated in the face of low levels of gene flow. In contrast to the M ratio, two alternative methods for genetic bottleneck detection identified recent bottlenecks in six grayling populations that warrant future monitoring. Consistent with the predominant role of random genetic drift, the effective population size (Ne) estimates of all grayling populations were very low with the majority of Ne estimates below 50. Taken together, highly structured local populations, limited gene flow and the small Ne of grayling populations indicates that grayling populations are vulnerable to overexploitation and, hence, monitoring and careful management using the precautionary principles is required not only in Finland but throughout Europe. Population genetic analyses of lake-run brown trout populations in the Inari basin (northernmost Finland) revealed hierarchical population structure where individual populations were clustered into three population groups largely corresponding to different geographic regions of the basin. Similar to my earlier work with European grayling, the genetic differentiation among and within population groups of lake-run brown trout was relatively high. Such strong differentiation indicated that the power to determine the relative contribution of populations in mixed fisheries should be relatively high. Consistent with these expectations, high accuracy and precision in mixed stock analysis (MSA) simulations were observed. Application of MSA to indigenous fish caught in the Inari basin identified altogether twelve populations that contributed significantly to mixed stock fisheries with the Ivalojoki river system being the major contributor (70%) to the total catch. When the contribution of wild trout populations to the fisheries was evaluated regionally, geographically nearby populations were the main contributors to the local catches. MSA also revealed a clear separation between the lower and upper reaches of Ivalojoki river system – in contrast to lower reaches of the Ivalojoki river that contributed considerably to the catch, populations from the upper reaches of the Ivalojoki river system (>140 km from the river mouth) did not contribute significantly to the fishery. This could be related to the available habitat size but also associated with a resident type life history and increased cost of migration. The studies in my thesis highlight the importance of dense sampling and wide population coverage at the scale being studied and also demonstrate the importance of critical evaluation of the underlying assumptions of the population genetic models and methods used. These results have important implications for conservation and sustainable fisheries management of Finnish populations of European grayling and brown trout in the Inari basin.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Connectivity depends on rates of dispersal between communities. For marine soft-sediment communities continued small-scale dispersal as post-larvae and as adults can be equally important in maintaining community composition, as initial recruitment of substrate by pelagic larvae. In this thesis post-larval dispersal strategies of benthic invertebrates, as well as mechanisms by which communities are connected were investigated. Such knowledge on dispersal is scarce, due to the difficulties in actually measuring dispersal directly in nature, and dispersal has not previously been quantified in the Baltic Sea. Different trap-types were used underwater to capture dispersing invertebrates at different sites, while in parallel measuring waves and currents. Local community composition was found to change predictably under varying rates of dispersal and physical connectivity (waves and currents). This response was, however, dependent on dispersal-related traits of taxa. Actively dispersing taxa will be relatively better at maintaining their position, as they are not as dependent on hydrodynamic conditions for dispersal and will be less prone to be passively transported by currents. Taxa also dispersed in relative proportions that were distinctly different from resident community composition and a significant proportion (40 %) of taxa were found to lack a planktonic larval life-stage. Community assembly was re-started in a large-scale manipulative field experiment over one year across several sites, which revealed how patterns of community composition (α-, β- and λ-diversity) change depending on rates of dispersal. Results also demonstrated that in response to small-scale disturbance, initial recruitment was by nearby-dominant species after which other species arrived from successively further away. At later assembly time, the number of coexisting species increased beyond what was expected purely by local niche requirements (species sorting), transferring regional differences in community composition (β-diversity) to the local scale (α-diversity, mass effect). Findings of this thesis complement more theoretical studies in metacommunity ecology by demonstrating that understanding how and when individuals disperse relative to underlying environmental heterogeneity is key to interpreting how patterns of diversity change across different spatial scales. Such information from nature is critical when predicting responses to, for example, different types of disturbances or management actions in conservation.