50 resultados para JANKELEVITCH, VLADIMIR
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Tiivistelmä: Karjalan tasavallan Vodlajärven kansallispuistossa sijaitsevan Lishkansuon kasvillisuus
Notes on the freshwater pearl mussel (Margaritifera margaritifera) in the Kostomuksha Nature Reserve
Resumo:
Doctoral dissertation, Academy of Fine Arts
Resumo:
Kirjoitus perustuu esitelmään Tieteen päivillä 2005
Resumo:
Tutkimus suomalaisten yritysten liiketoimintamahdollisuuksista hiilidoksidipäästöjen vähentämisen parissa Luoteis-Venäjällä.
Resumo:
Nykyään kolmeen kerrokseen perustuvat client-server –sovellukset ovat suuri kinnostuskohde sekä niiden kehittäjille etta käyttäjille. Tietotekniikan nopean kehityksen ansiosta näillä sovelluksilla on monipuolinen käyttö teollisuuden eri alueilla. Tällä hetkellä on olemassa paljon työkaluja client-server –sovellusten kehittämiseen, jotka myös tyydyttävät asiakkaiden asettamia vaatimuksia. Nämä työkalut eivät kuitenkaan mahdollista joustavaa toimintaa graafisen käyttöliittyman kanssa. Tämä diplomityö käsittelee client-server –sovellusten kehittamistä XML –kielen avulla. Tämä lähestymistapa mahdollistaa client-server –sovellusten rakentamista niin, että niiden graafinen käyttöliittymä ja ulkonäkö olisivat helposti muokattavissa ilman ohjelman ytimen uudelleenkääntämistä. Diplomityö koostuu kahdesta ostasta: teoreettisesta ja käytännöllisestä. Teoreettinen osa antaa yleisen tiedon client-server –arkkitehtuurista ja kuvailee ohjelmistotekniikan pääkohdat. Käytannöllinen osa esittää tulokset, client-server –sovellusten kehittämisteknologian kehittämislähestymistavan XML: ää käyttäen ja tuloksiin johtavat usecase– ja sekvenssidiagrammit. Käytännöllinen osa myos sisältää esimerkit toteutetuista XML-struktuureista, jotka kuvaavat client –sovellusten kuvaruutukaavakkeiden esintymisen ja serverikyselykaaviot.
Resumo:
The purpose of the research is to define practical profit which can be achieved using neural network methods as a prediction instrument. The thesis investigates the ability of neural networks to forecast future events. This capability is checked on the example of price prediction during intraday trading on stock market. The executed experiments show predictions of average 1, 2, 5 and 10 minutes’ prices based on data of one day and made by two different types of forecasting systems. These systems are based on the recurrent neural networks and back propagation neural nets. The precision of the predictions is controlled by the absolute error and the error of market direction. The economical effectiveness is estimated by a special trading system. In conclusion, the best structures of neural nets are tested with data of 31 days’ interval. The best results of the average percent of profit from one transaction (buying + selling) are 0.06668654, 0.188299453, 0.349854787 and 0.453178626, they were achieved for prediction periods 1, 2, 5 and 10 minutes. The investigation can be interesting for the investors who have access to a fast information channel with a possibility of every-minute data refreshment.