10 resultados para Interval analysis (Mathematics)

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Online paper web analysis relies on traversing scanners that criss-cross on top of a rapidly moving paper web. The sensors embedded in the scanners measure many important quality variables of paper, such as basis weight, caliper and porosity. Most of these quantities are varying a lot and the measurements are noisy at many different scales. The zigzagging nature of scanning makes it difficult to separate machine direction (MD) and cross direction (CD) variability from one another. For improving the 2D resolution of the quality variables above, the paper quality control team at the Department of Mathematics and Physics at LUT has implemented efficient Kalman filtering based methods that currently use 2D Fourier series. Fourier series are global and therefore resolve local spatial detail on the paper web rather poorly. The target of the current thesis is to study alternative wavelet based representations as candidates to replace the Fourier basis for a higher resolution spatial reconstruction of these quality variables. The accuracy of wavelet compressed 2D web fields will be compared with corresponding truncated Fourier series based fields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of this master’s thesis was to quantitatively study the reliability of market and sales forecasts of a certain company by measuring bias, precision and accuracy of these forecasts by comparing forecasts against actual values. Secondly, the differences of bias, precision and accuracy between markets were explained by various macroeconomic variables and market characteristics. Accuracy and precision of the forecasts seems to vary significantly depending on the market that is being forecasted, the variable that is being forecasted, the estimation period, the length of the estimated period, the forecast horizon and the granularity of the data. High inflation, low income level and high year-on-year market volatility seems to be related with higher annual market forecast uncertainty and high year-on-year sales volatility with higher sales forecast uncertainty. When quarterly market size is forecasted, correlation between macroeconomic variables and forecast errors reduces. Uncertainty of the sales forecasts cannot be explained with macroeconomic variables. Longer forecasts are more uncertain, shorter estimated period leads to higher uncertainty, and usually more recent market forecasts are less uncertain. Sales forecasts seem to be more uncertain than market forecasts, because they incorporate both market size and market share risks. When lead time is more than one year, forecast risk seems to grow as a function of root forecast horizon. When lead time is less than year, sequential error terms are typically correlated, and therefore forecast errors are trending or mean-reverting. The bias of forecasts seems to change in cycles, and therefore the future forecasts cannot be systematically adjusted with it. The MASE cannot be used to measure whether the forecast can anticipate year-on-year volatility. Instead, we constructed a new relative accuracy measure to cope with this particular situation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fuzzy subsets and fuzzy subgroups are basic concepts in fuzzy mathematics. We shall concentrate on fuzzy subgroups dealing with some of their algebraic, topological and complex analytical properties. Explorations are theoretical belonging to pure mathematics. One of our ideas is to show how widely fuzzy subgroups can be used in mathematics, which brings out the wealth of this concept. In complex analysis we focus on Möbius transformations, combining them with fuzzy subgroups in the algebraic and topological sense. We also survey MV spaces with or without a link to fuzzy subgroups. Spectral space is known in MV algebra. We are interested in its topological properties in MV-semilinear space. Later on, we shall study MV algebras in connection with Riemann surfaces. In fact, the Riemann surface as a concept belongs to complex analysis. On the other hand, Möbius transformations form a part of the theory of Riemann surfaces. In general, this work gives a good understanding how it is possible to fit together different fields of mathematics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we study the classification of forest types using mathematics based image analysis on satellite data. We are interested in improving classification of forest segments when a combination of information from two or more different satellites is used. The experimental part is based on real satellite data originating from Canada. This thesis gives summary of the mathematics basics of the image analysis and supervised learning , methods that are used in the classification algorithm. Three data sets and four feature sets were investigated in this thesis. The considered feature sets were 1) histograms (quantiles) 2) variance 3) skewness and 4) kurtosis. Good overall performances were achieved when a combination of ASTERBAND and RADARSAT2 data sets was used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The uncertainty of any analytical determination depends on analysis and sampling. Uncertainty arising from sampling is usually not controlled and methods for its evaluation are still little known. Pierre Gy’s sampling theory is currently the most complete theory about samplingwhich also takes the design of the sampling equipment into account. Guides dealing with the practical issues of sampling also exist, published by international organizations such as EURACHEM, IUPAC (International Union of Pure and Applied Chemistry) and ISO (International Organization for Standardization). In this work Gy’s sampling theory was applied to several cases, including the analysis of chromite concentration estimated on SEM (Scanning Electron Microscope) images and estimation of the total uncertainty of a drug dissolution procedure. The results clearly show that Gy’s sampling theory can be utilized in both of the above-mentioned cases and that the uncertainties achieved are reliable. Variographic experiments introduced in Gy’s sampling theory are beneficially applied in analyzing the uncertainty of auto-correlated data sets such as industrial process data and environmental discharges. The periodic behaviour of these kinds of processes can be observed by variographic analysis as well as with fast Fourier transformation and auto-correlation functions. With variographic analysis, the uncertainties are estimated as a function of the sampling interval. This is advantageous when environmental data or process data are analyzed as it can be easily estimated how the sampling interval is affecting the overall uncertainty. If the sampling frequency is too high, unnecessary resources will be used. On the other hand, if a frequency is too low, the uncertainty of the determination may be unacceptably high. Variographic methods can also be utilized to estimate the uncertainty of spectral data produced by modern instruments. Since spectral data are multivariate, methods such as Principal Component Analysis (PCA) are needed when the data are analyzed. Optimization of a sampling plan increases the reliability of the analytical process which might at the end have beneficial effects on the economics of chemical analysis,

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systems biology is a new, emerging and rapidly developing, multidisciplinary research field that aims to study biochemical and biological systems from a holistic perspective, with the goal of providing a comprehensive, system- level understanding of cellular behaviour. In this way, it addresses one of the greatest challenges faced by contemporary biology, which is to compre- hend the function of complex biological systems. Systems biology combines various methods that originate from scientific disciplines such as molecu- lar biology, chemistry, engineering sciences, mathematics, computer science and systems theory. Systems biology, unlike “traditional” biology, focuses on high-level concepts such as: network, component, robustness, efficiency, control, regulation, hierarchical design, synchronization, concurrency, and many others. The very terminology of systems biology is “foreign” to “tra- ditional” biology, marks its drastic shift in the research paradigm and it indicates close linkage of systems biology to computer science. One of the basic tools utilized in systems biology is the mathematical modelling of life processes tightly linked to experimental practice. The stud- ies contained in this thesis revolve around a number of challenges commonly encountered in the computational modelling in systems biology. The re- search comprises of the development and application of a broad range of methods originating in the fields of computer science and mathematics for construction and analysis of computational models in systems biology. In particular, the performed research is setup in the context of two biolog- ical phenomena chosen as modelling case studies: 1) the eukaryotic heat shock response and 2) the in vitro self-assembly of intermediate filaments, one of the main constituents of the cytoskeleton. The range of presented approaches spans from heuristic, through numerical and statistical to ana- lytical methods applied in the effort to formally describe and analyse the two biological processes. We notice however, that although applied to cer- tain case studies, the presented methods are not limited to them and can be utilized in the analysis of other biological mechanisms as well as com- plex systems in general. The full range of developed and applied modelling techniques as well as model analysis methodologies constitutes a rich mod- elling framework. Moreover, the presentation of the developed methods, their application to the two case studies and the discussions concerning their potentials and limitations point to the difficulties and challenges one encounters in computational modelling of biological systems. The problems of model identifiability, model comparison, model refinement, model inte- gration and extension, choice of the proper modelling framework and level of abstraction, or the choice of the proper scope of the model run through this thesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reliable detection of intrapartum fetal acidosis is crucial for preventing morbidity. Hypoxia-related changes of fetal heart rate variability (FHRV) are controlled by the autonomic nervous system. Subtle changes in FHRV that cannot be identified by inspection can be detected and quantified by power spectral analysis. Sympathetic activity relates to low-frequency FHRV and parasympathetic activity to both low- and high-frequency FHRV. The aim was to study whether intra partum fetal acidosis can be detected by analyzing spectral powers of FHRV, and whether spectral powers associate with hypoxia-induced changes in the fetal electrocardiogram and with the pH of fetal blood samples taken intrapartum. The FHRV of 817 R-R interval recordings, collected as a part of European multicenter studies, were analyzed. Acidosis was defined as cord pH ≤ 7.05 or scalp pH ≤ 7.20, and metabolic acidosis as cord pH ≤ 7.05 and base deficit ≥ 12 mmol/l. Intrapartum hypoxia increased the spectral powers of FHRV. As fetal acidosis deepened, FHRV decreased: fetuses with significant birth acidosis had, after an initial increase, a drop in spectral powers near delivery, suggesting a breakdown of fetal compensation. Furthermore, a change in excess of 30% of the low-to-high frequency ratio of FHRV was associated with fetal metabolic acidosis. The results suggest that a decrease in the spectral powers of FHRV signals concern for fetal wellbeing. A single measure alone cannot be used to reveal fetal hypoxia since the spectral powers vary widely intra-individually. With technical developments, continuous assessment of intra-individual changes in spectral powers of FHRV might aid in the detection of fetal compromise due to hypoxia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 1859, Charles Darwin published his theory of evolution by natural selection, the process occurring based on fitness benefits and fitness costs at the individual level. Traditionally, evolution has been investigated by biologists, but it has induced mathematical approaches, too. For example, adaptive dynamics has proven to be a very applicable framework to the purpose. Its core concept is the invasion fitness, the sign of which tells whether a mutant phenotype can invade the prevalent phenotype. In this thesis, four real-world applications on evolutionary questions are provided. Inspiration for the first two studies arose from a cold-adapted species, American pika. First, it is studied how the global climate change may affect the evolution of dispersal and viability of pika metapopulations. Based on the results gained here, it is shown that the evolution of dispersal can result in extinction and indeed, evolution of dispersalshould be incorporated into the viability analysis of species living in fragmented habitats. The second study is focused on the evolution of densitydependent dispersal in metapopulations with small habitat patches. It resulted a very surprising unintuitive evolutionary phenomenon, how a non-monotone density-dependent dispersal may evolve. Cooperation is surprisingly common in many levels of life, despite of its obvious vulnerability to selfish cheating. This motivated two applications. First, it is shown that density-dependent cooperative investment can evolve to have a qualitatively different, monotone or non-monotone, form depending on modelling details. The last study investigates the evolution of investing into two public-goods resources. The results suggest one general path by which labour division can arise via evolutionary branching. In addition to applications, two novel methodological derivations of fitness measures in structured metapopulations are given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis develops a method for identifying students struggling in their mathematical studies at an early stage. It helps in directing support to students needing and benefiting from it the most. Thus, frustration felt by weaker students may decrease and therefore, hopefully, also drop outs of potential engineering students. The research concentrates on a combination of personality and intelligence aspects. Personality aspects gave information on conation and motivation for learning. This part was studied from the perspective of motivation and self-regulation. Intelligence aspects gave information on declarative and procedural knowledge: what had been taught and what was actually mastered. Students answered surveys on motivation and self-regulation in 2010 and 2011. Based on their answers, background information, results in the proficiency test, and grades in the first mathematics course, profiles describing the students were formed. In the following years, the profiles were updated with new information obtained each year. The profiles used to identify struggling students combine personality (motivation, selfregulation, and self-efficacy) and intelligence (declarative and procedural knowledge) aspects at the beginning of their studies. Identifying students in need of extra support is a good start, but methods for providing support must be found. This thesis also studies how this support could be taken into account in course arrangements. The methods used include, for example, languaging and scaffolding, and continuous feedback. The analysis revealed that allocating resources based on the predicted progress does not increase costs or lower the results of better students. Instead, it will help weaker students obtain passing grades.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent rapid development of biotechnological approaches has enabled the production of large whole genome level biological data sets. In order to handle thesedata sets, reliable and efficient automated tools and methods for data processingand result interpretation are required. Bioinformatics, as the field of studying andprocessing biological data, tries to answer this need by combining methods and approaches across computer science, statistics, mathematics and engineering to studyand process biological data. The need is also increasing for tools that can be used by the biological researchers themselves who may not have a strong statistical or computational background, which requires creating tools and pipelines with intuitive user interfaces, robust analysis workflows and strong emphasis on result reportingand visualization. Within this thesis, several data analysis tools and methods have been developed for analyzing high-throughput biological data sets. These approaches, coveringseveral aspects of high-throughput data analysis, are specifically aimed for gene expression and genotyping data although in principle they are suitable for analyzing other data types as well. Coherent handling of the data across the various data analysis steps is highly important in order to ensure robust and reliable results. Thus,robust data analysis workflows are also described, putting the developed tools andmethods into a wider context. The choice of the correct analysis method may also depend on the properties of the specific data setandthereforeguidelinesforchoosing an optimal method are given. The data analysis tools, methods and workflows developed within this thesis have been applied to several research studies, of which two representative examplesare included in the thesis. The first study focuses on spermatogenesis in murinetestis and the second one examines cell lineage specification in mouse embryonicstem cells.