15 resultados para Intelligent Design
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Kommentti Matti Kamppisen kirjoitukseen TT -lehdessä 1/2005
Resumo:
Tämä diplomityö käsittelee kartonginmuovaukseen käytettävien puristintyökalujen kehittämistä. Työntavoitteina oli kehittää työkalutekniikan suunnittelua ja valmistusta edullisemmaksi, nopeammaksi ja työkaluja toiminnoiltaan tehokkaammiksi. Työn tuli sisältää myös ohjeet työkalujen suunnittelemiseksi ja valmistamiseksi jatkoa ajatellen. Työn aikana selvitettiin mahdollisia työkalurakennevaihtoehtoja, valmistusmateriaaleja sekä niiden käsittelymenetelmiä ja lastuamista sekä sen tarjoamia mahdollisuuksia valmistusmenetelmänä. Työkalupari suunniteltiin modulaariseksi siten, että uusia työkaluja varten vain osa komponenteista täytyy valmistaa uudelleen, samalla työkalun osien lukumäärää pienennettiin merkittävästi. Valmistusmateriaaliksi valittiin hyvin lastuttava työkaluteräs ja sen koneistaminen tapahtui vaakakaraisessa koneistuskeskuksessa. Työn loppuvaiheessa työkalukokonaisuudelle tehtiin kustannuslaskelma jaoteltuna eri työvaiheille sekä komponenteittain. Työkalu asennettiin puristimeen ja sille suoritettiin käyttötestaus. Työn aikana karttuneen kokemuksen sekä koekäytön perusteella tehtiin jatkokehitysehdotuksia.
Resumo:
Superheater corrosion causes vast annual losses for the power companies. With a reliable corrosion prediction method, the plants can be designed accordingly, and knowledge of fuel selection and determination of process conditions may be utilized to minimize superheater corrosion. Growing interest to use recycled fuels creates additional demands for the prediction of corrosion potential. Models depending on corrosion theories will fail, if relations between the inputs and the output are poorly known. A prediction model based on fuzzy logic and an artificial neural network is able to improve its performance as the amount of data increases. The corrosion rate of a superheater material can most reliably be detected with a test done in a test combustor or in a commercial boiler. The steel samples can be located in a special, temperature-controlled probe, and exposed to the corrosive environment for a desired time. These tests give information about the average corrosion potential in that environment. Samples may also be cut from superheaters during shutdowns. The analysis ofsamples taken from probes or superheaters after exposure to corrosive environment is a demanding task: if the corrosive contaminants can be reliably analyzed, the corrosion chemistry can be determined, and an estimate of the material lifetime can be given. In cases where the reason for corrosion is not clear, the determination of the corrosion chemistry and the lifetime estimation is more demanding. In order to provide a laboratory tool for the analysis and prediction, a newapproach was chosen. During this study, the following tools were generated: · Amodel for the prediction of superheater fireside corrosion, based on fuzzy logic and an artificial neural network, build upon a corrosion database developed offuel and bed material analyses, and measured corrosion data. The developed model predicts superheater corrosion with high accuracy at the early stages of a project. · An adaptive corrosion analysis tool based on image analysis, constructedas an expert system. This system utilizes implementation of user-defined algorithms, which allows the development of an artificially intelligent system for thetask. According to the results of the analyses, several new rules were developed for the determination of the degree and type of corrosion. By combining these two tools, a user-friendly expert system for the prediction and analyses of superheater fireside corrosion was developed. This tool may also be used for the minimization of corrosion risks by the design of fluidized bed boilers.
Resumo:
The significance of services as business and human activities has increased dramatically throughout the world in the last three decades. Becoming a more and more competitive and efficient service provider while still being able to provide unique value opportunities for customers requires new knowledge and ideas. Part of this knowledge is created and utilized in daily activities in every service organization, but not all of it, and therefore an emerging phenomenon in the service context is information awareness. Terms like big data and Internet of things are not only modern buzz-words but they are also describing urgent requirements for a new type of competences and solutions. When the amount of information increases and the systems processing information become more efficient and intelligent, it is the human understanding and objectives that may get separated from the automated processes and technological innovations. This is an important challenge and the core driver for this dissertation: What kind of information is created, possessed and utilized in the service context, and even more importantly, what information exists but is not acknowledged or used? In this dissertation the focus is on the relationship between service design and service operations. Reframing this relationship refers to viewing the service system from the architectural perspective. The selected perspective allows analysing the relationship between design activities and operational activities as an information system while maintaining the tight connection to existing service research contributions and approaches. This type of an innovative approach is supported by research methodology that relies on design science theory. The methodological process supports the construction of a new design artifact based on existing theoretical knowledge, creation of new innovations and testing the design artifact components in real service contexts. The relationship between design and operations is analysed in the health care and social care service systems. The existing contributions in service research tend to abstract services and service systems as value creation, working or interactive systems. This dissertation adds an important information processing system perspective to the research. The main contribution focuses on the following argument: Only part of the service information system is automated and computerized, whereas a significant part of information processing is embedded in human activities, communication and ad-hoc reactions. The results indicate that the relationship between service design and service operations is more complex and dynamic than the existing scientific and managerial models tend to view it. Both activities create, utilize, mix and share information, making service information management a necessary but relatively unknown managerial task. On the architectural level, service system -specific elements seem to disappear, but access to more general information elements and processes can be found. While this dissertation focuses on conceptual-level design artifact construction, the results provide also very practical implications for service providers. Personal, visual and hidden activities of service, and more importantly all changes that take place in any service system have also an information dimension. Making this information dimension visual and prioritizing the processed information based on service dimensions is likely to provide new opportunities to increase activities and provide a new type of service potential for customers.
Resumo:
The Laboratory of Intelligent Machine researches and develops energy-efficient power transmissions and automation for mobile construction machines and industrial processes. The laboratory's particular areas of expertise include mechatronic machine design using virtual technologies and simulators and demanding industrial robotics. The laboratory has collaborated extensively with industrial actors and it has participated in significant international research projects, particularly in the field of robotics. For years, dSPACE tools were the lonely hardware which was used in the lab to develop different control algorithms in real-time. dSPACE's hardware systems are in widespread use in the automotive industry and are also employed in drives, aerospace, and industrial automation. But new competitors are developing new sophisticated systems and their features convinced the laboratory to test new products. One of these competitors is National Instrument (NI). In order to get to know the specifications and capabilities of NI tools, an agreement was made to test a NI evolutionary system. This system is used to control a 1-D hydraulic slider. The objective of this research project is to develop a control scheme for the teleoperation of a hydraulically driven manipulator, and to implement a control algorithm between human and machine interaction, and machine and task environment interaction both on NI and dSPACE systems simultaneously and to compare the results.
Resumo:
The assembly and maintenance of the International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. The VV is made of stainless steel, which has poor machinability and tends to work harden very rapidly, and all the machining operations need to be carried out from inside of the ITER VV. A general industrial robot cannot be used due to its poor stiffness in the heavy duty machining process, and this will cause many problems, such as poor surface quality, tool damage, low accuracy. Therefore, one of the most suitable options should be a light weight mobile robot which is able to move around inside of the VV and perform different machining tasks by replacing different cutting tools. Reducing the mass of the robot manipulators offers many advantages: reduced material costs, reduced power consumption, the possibility of using smaller actuators, and a higher payload-to-robot weight ratio. Offsetting these advantages, the lighter weight robot is more flexible, which makes it more difficult to control. To achieve good machining surface quality, the tracking of the end effector must be accurate, and an accurate model for a more flexible robot must be constructed. This thesis studies the dynamics and control of a 10 degree-of-freedom (DOF) redundant hybrid robot (4-DOF serial mechanism and 6-DOF 6-UPS hexapod parallel mechanisms) hydraulically driven with flexible rods under the influence of machining forces. Firstly, the flexibility of the bodies is described using the floating frame of reference method (FFRF). A finite element model (FEM) provided the Craig-Bampton (CB) modes needed for the FFRF. A dynamic model of the system of six closed loop mechanisms was assembled using the constrained Lagrange equations and the Lagrange multiplier method. Subsequently, the reaction forces between the parallel and serial parts were used to study the dynamics of the serial robot. A PID control based on position predictions was implemented independently to control the hydraulic cylinders of the robot. Secondly, in machining, to achieve greater end effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. This thesis investigates the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two schemes of intelligent control for a hydraulically driven parallel mechanism based on the dynamic model: (1) a fuzzy-PID self-tuning controller composed of the conventional PID control and with fuzzy logic, and (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self-tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel mechanism based on rod length predictions. The serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should be controlled to hold the hexa-element. Thirdly, a finite element approach of multibody systems using the Special Euclidean group SE(3) framework is presented for a parallel mechanism with flexible piston rods under the influence of machining forces. The flexibility of the bodies is described using the nonlinear interpolation method with an exponential map. The equations of motion take the form of a differential algebraic equation on a Lie group, which is solved using a Lie group time integration scheme. The method relies on the local description of motions, so that it provides a singularity-free formulation, and no parameterization of the nodal variables needs to be introduced. The flexible slider constraint is formulated using a Lie group and used for modeling a flexible rod sliding inside a cylinder. The dynamic model of the system of six closed loop mechanisms was assembled using Hamilton’s principle and the Lagrange multiplier method. A linearized hydraulic control system based on rod length predictions was implemented independently to control the hydraulic cylinders. Consequently, the results of the simulations demonstrating the behavior of the robot machine are presented for each case study. In conclusion, this thesis studies the dynamic analysis of a special hybrid (serialparallel) robot for the above-mentioned special task involving the ITER and investigates different control algorithms that can significantly improve machining performance. These analyses and results provide valuable insight into the design and control of the parallel robot with flexible rods.
Resumo:
Continuous loading and unloading can cause breakdown of cranes. In seeking solution to this problem, the use of an intelligent control system for improving the fatigue life of cranes in the control of mechatronics has been under study since 1994. This research focuses on the use of neural networks as possibilities of developing algorithm to map stresses on a crane. The intelligent algorithm was designed to be a part of the system of a crane, the design process started with solid works, ANSYS and co-simulation using MSc Adams software which was incorporated in MATLAB-Simulink and finally MATLAB neural network (NN) for the optimization process. The flexibility of the boom accounted for the accuracy of the maximum stress results in the ADAMS model. The flexibility created in ANSYS produced more accurate results compared to the flexibility model in ADAMS/View using discrete link. The compatibility between.ADAMS and ANSYS softwares was paramount in the efficiency and the accuracy of the results. Von Mises stresses analysis was more suitable for this thesis work because the hydraulic boom was made from construction steel FE-510 of steel grade S355 with yield strength of 355MPa. Von Mises theory was good for further analysis due to ductility of the material and the repeated tensile and shear loading. Neural network predictions for the maximum stresses were then compared with the co-simulation results for accuracy, and the comparison showed that the results obtained from neural network model were sufficiently accurate in predicting the maximum stresses on the boom than co-simulation.
Resumo:
The review of intelligent machines shows that the demand for new ways of helping people in perception of the real world is becoming higher and higher every year. This thesis provides information about design and implementation of machine vision for mobile assembly robot. The work has been done as a part of LUT project in Laboratory of Intelligent Machines. The aim of this work is to create a working vision system. The qualitative and quantitative research were done to complete this task. In the first part, the author presents the theoretical background of such things as digital camera work principles, wireless transmission basics, creation of live stream, methods used for pattern recognition. Formulas, dependencies and previous research related to the topic are shown. In the second part, the equipment used for the project is described. There is information about the brands, models, capabilities and also requirements needed for implementation. Although, the author gives a description of LabVIEW software, its add-ons and OpenCV which are used in the project. Furthermore, one can find results in further section of considered thesis. They mainly represented by screenshots from cameras, working station and photos of the system. The key result of this thesis is vision system created for the needs of mobile assembly robot. Therefore, it is possible to see graphically what was done on examples. Future research in this field includes optimization of the pattern recognition algorithm. This will give less response time for recognizing objects. Presented by author system can be used also for further activities which include artificial intelligence usage.
Resumo:
Summary