11 resultados para Informatics Engineering - Human Computer Interaction
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Advances in technology have provided new ways of using entertainment and game technology to foster human interaction. Games and playing with games have always been an important part of people’s everyday lives. Traditionally, human-computer interaction (HCI) research was seen as a psychological cognitive science focused on human factors, with engineering sciences as the computer science part of it. Although cognitive science has made significant progress over the past decade, the influence of people’s emotions on design networks is increasingly important, especially when the primary goal is to challenge and entertain users (Norman 2002). Game developers have explored the key issues in game design and identified that the driving force in the success of games is user experience. User-centered design integrates knowledge of users’ activity practices, needs, and preferences into the design process. Geocaching is a location-based treasure hunt game created by a community of players. Players use GPS (Global Position System) technology to find “treasures” and create their own geocaches; the game can be developed when the players invent caches and used more imagination to creations the caches. This doctoral dissertation explores user experience of geocaching and its applications in tourism and education. Globally, based on the Geocaching.com webpage, geocaching has been played about 180 countries and there are more than 10 million registered geocachers worldwide (Geocaching.com, 25.11.2014). This dissertation develops and presents an interaction model called the GameFlow Experience model that can be used to support the design of treasure hunt applications in tourism and education contexts. The GameFlow Model presents and clarifies various experiences; it provides such experiences in a real-life context, offers desirable design targets to be utilized in service design, and offers a perspective to consider when evaluating the success of adventure game concepts. User-centered game designs have adapted to human factor research in mainstream computing science. For many years, the user-centered design approach has been the most important research field in software development. Research has been focusing on user-centered design in software development such as office programs, but the same ideas and theories that will reflect the needs of a user-centered research are now also being applied to game design (Charles et al. 2005.) For several years, we have seen a growing interest in user experience design. Digital games are experience providers, and game developers need tools to better understand the user experience related to products and services they have created. This thesis aims to present what the user experience is in geocaching and treasure hunt games and how it can be used to develop new concepts for the treasure hunt. Engineers, designers, and researchers should have a clear understanding of what user experience is, what its parts are, and most importantly, how we can influence user satisfaction. In addition, we need to understand how users interact with electronic products and people, and how different elements synergize their experiences. This doctoral dissertation represents pioneering work on the user experience of geocaching and treasure hunt games in the context of tourism and education. The research also provides a model for game developers who are planning treasure hunt concepts.
Resumo:
This study reviews the research on interaction techniques and methods that could be applied in mobile augmented reality scenarios. The review is focused on themost recent advances and considers especially the use of head-mounted displays. Inthe review process, we have followed a systematic approach, which makes the reviewtransparent, repeatable, and less prone to human errors than if it was conducted in amore traditional manner. The main research subjects covered in the review are headorientation and gaze-tracking, gestures and body part-tracking, and multimodality– as far as the subjects are related to human-computer interaction. Besides these,also a number of other areas of interest will be discussed.
Resumo:
Usein käyttäjäkokemuksella (user experience, UX) kuvataan tuotteen tai palvelun synnyttämiä tunteita ja kokemuksia. Vaikka UX on yleisesti tunnettu termi ja tärkeä tekijä menestyvän tuotteen luomisessa, ei yhtenäistä määritelmää sille ole muodostunut. Kun suunnittelija, ohjelmistotuottaja ja loppukäyttäjä käsittävät sen eri tavoin, ei tuote vastaa loppukäyttäjän vaatimuksia. Ongelman ratkaisemiseksi laaditaan kysely lukiolaisille ja tuloksia verrataan aikaisempiin tuloksiin, jossa vastaajina olivat yliopisto-opiskelijat ja UX-ammattilaiset. Tulosten perusteella lukiolaiset määrittelevät UX:n hyvin laaja-alaisesti ja sisällyttävät siihen lähes kaikki käyttöön liittyvät asiat. Heille tärkeintä ovat tuotteen konkreettiset ominaisuudet, kuten toimivuus ja luotettavuus. Koska UX merkitsee niin monia asioita loppukäyttäjille, suunnittelijoiden tulisi keskittyä käyttäjäkokemuksen luomiseen sen määrittelemisen sijaan. Oikea käyttäjäkokemus oikealle käyttäjälle.
Resumo:
Automation technologies are widely acclaimed to have the potential to significantly reduce energy consumption and energy-related costs in buildings. However, despite the abundance of commercially available technologies, automation in domestic environments keep on meeting commercial failures. The main reason for this is the development process that is used to build the automation applications, which tend to focus more on technical aspects rather than on the needs and limitations of the users. An instance of this problem is the complex and poorly designed home automation front-ends that deter customers from investing in a home automation product. On the other hand, developing a usable and interactive interface is a complicated task for developers due to the multidisciplinary challenges that need to be identified and solved. In this context, the current research work investigates the different design problems associated with developing a home automation interface as well as the existing design solutions that are applied to these problems. The Qualitative Data Analysis approach was used for collecting data from research papers and the open coding process was used to cluster the findings. From the analysis of the data collected, requirements for designing the interface were derived. A home energy management functionality for a Web-based home automation front-end was developed as a proof-of-concept and a user evaluation was used to assess the usability of the interface. The results of the evaluation showed that this holistic approach to designing interfaces improved its usability which increases the chances of its commercial success.
Resumo:
The computer is a useful tool in the teaching of upper secondary school physics, and should not have a subordinate role in students' learning process. However, computers and computer-based tools are often not available when they could serve their purpose best in the ongoing teaching. Another problem is the fact that commercially available tools are not usable in the way the teacher wants. The aim of this thesis was to try out a novel teaching scenario in a complicated subject in physics, electrodynamics. The didactic engineering of the thesis consisted of developing a computer-based simulation and training material, implementing the tool in physics teaching and investigating its effectiveness in the learning process. The design-based research method, didactic engineering (Artigue, 1994), which is based on the theoryof didactical situations (Brousseau, 1997), was used as a frame of reference for the design of this type of teaching product. In designing the simulation tool a general spreadsheet program was used. The design was based on parallel, dynamic representations of the physics behind the function of an AC series circuit in both graphical and numerical form. The tool, which was furnished with possibilities to control the representations in an interactive way, was hypothesized to activate the students and promote the effectiveness of their learning. An effect variable was constructed in order to measure the students' and teachers' conceptions of learning effectiveness. The empirical study was twofold. Twelve physics students, who attended a course in electrodynamics in an upper secondary school, participated in a class experiment with the computer-based tool implemented in three modes of didactical situations: practice, concept introduction and assessment. The main goal of the didactical situations was to have students solve problems and study the function of AC series circuits, taking responsibility for theirown learning process. In the teacher study eighteen Swedish speaking physics teachers evaluated the didactic potential of the computer-based tool and the accompanying paper-based material without using them in their physics teaching. Quantitative and qualitative data were collected using questionnaires, observations and interviews. The result of the studies showed that both the group of students and the teachers had generally positive conceptions of learning effectiveness. The students' conceptions were more positive in the practice situation than in the concept introduction situation, a setting that was more explorative. However, it turned out that the students' conceptions were also positive in the more complex assessment situation. This had not been hypothesized. A deeper analysis of data from observations and interviews showed that one of the students in each pair was more active than the other, taking more initiative and more responsibilityfor the student-student and student-computer interaction. These active studentshad strong, positive conceptions of learning effectiveness in each of the threedidactical situations. The group of less active students had a weak but positive conception in the first iv two situations, but a negative conception in the assessment situation, thus corroborating the hypothesis ad hoc. The teacher study revealed that computers were seldom used in physics teaching and that computer programs were in short supply. The use of a computer was considered time-consuming. As long as physics teaching with computer-based tools has to take place in special computer rooms, the use of such tools will remain limited. The affordance is enhanced when the physical dimensions as well as the performance of the computer are optimised. As a consequence, the computer then becomes a real learning tool for each pair of students, smoothly integrated into the ongoing teaching in the same space where teaching normally takes place. With more interactive support from the teacher, the computer-based parallel, dynamic representations will be efficient in promoting the learning process of the students with focus on qualitative reasoning - an often neglected part of the learning process of the students in upper secondary school physics.
Resumo:
Abstract
Resumo:
Biokuvainformatiikan kehittäminen – mikroskopiasta ohjelmistoratkaisuihin – sovellusesimerkkinä α2β1-integriini Kun ihmisen genomi saatiin sekvensoitua vuonna 2003, biotieteiden päätehtäväksi tuli selvittää eri geenien tehtävät, ja erilaisista biokuvantamistekniikoista tuli keskeisiä tutkimusmenetelmiä. Teknologiset kehitysaskeleet johtivat erityisesti fluoresenssipohjaisten valomikroskopiatekniikoiden suosion räjähdysmäiseen kasvuun, mutta mikroskopian tuli muuntua kvalitatiivisesta tieteestä kvantitatiiviseksi. Tämä muutos synnytti uuden tieteenalan, biokuvainformatiikan, jonka on sanottu mahdollisesti mullistavan biotieteet. Tämä väitöskirja esittelee laajan, poikkitieteellisen työkokonaisuuden biokuvainformatiikan alalta. Väitöskirjan ensimmäinen tavoite oli kehittää protokollia elävien solujen neliulotteiseen konfokaalimikroskopiaan, joka oli yksi nopeimmin kasvavista biokuvantamismenetelmistä. Ihmisen kollageenireseptori α2β1-integriini, joka on tärkeä molekyyli monissa fysiologisissa ja patologisissa prosesseissa, oli sovellusesimerkkinä. Työssä saavutettiin selkeitä visualisointeja integriinien liikkeistä, yhteenkeräytymisestä ja solun sisään siirtymisestä, mutta työkaluja kuvainformaation kvantitatiiviseen analysointiin ei ollut. Väitöskirjan toiseksi tavoitteeksi tulikin tällaiseen analysointiin soveltuvan tietokoneohjelmiston kehittäminen. Samaan aikaan syntyi biokuvainformatiikka, ja kipeimmin uudella alalla kaivattiin erikoistuneita tietokoneohjelmistoja. Tämän väitöskirjatyön tärkeimmäksi tulokseksi muodostui näin ollen BioImageXD, uudenlainen avoimen lähdekoodin ohjelmisto moniulotteisten biokuvien visualisointiin, prosessointiin ja analysointiin. BioImageXD kasvoi yhdeksi alansa suurimmista ja monipuolisimmista. Se julkaistiin Nature Methods -lehden biokuvainformatiikkaa käsittelevässä erikoisnumerossa, ja siitä tuli tunnettu ja laajalti käytetty. Väitöskirjan kolmas tavoite oli soveltaa kehitettyjä menetelmiä johonkin käytännönläheisempään. Tehtiin keinotekoisia piidioksidinanopartikkeleita, joissa oli "osoitelappuina" α2β1-integriinin tunnistavia vasta-aineita. BioImageXD:n avulla osoitettiin, että nanopartikkeleilla on potentiaalia lääkkeiden täsmäohjaussovelluksissa. Tämän väitöskirjatyön yksi perimmäinen tavoite oli edistää uutta ja tuntematonta biokuvainformatiikan tieteenalaa, ja tämä tavoite saavutettiin erityisesti BioImageXD:n ja sen lukuisten julkaistujen sovellusten kautta. Väitöskirjatyöllä on merkittävää potentiaalia tulevaisuudessa, mutta biokuvainformatiikalla on vakavia haasteita. Ala on liian monimutkainen keskimääräisen biolääketieteen tutkijan hallittavaksi, ja alan keskeisin elementti, avoimen lähdekoodin ohjelmistokehitystyö, on aliarvostettu. Näihin seikkoihin tarvitaan useita parannuksia,
Resumo:
Human activity recognition in everyday environments is a critical, but challenging task in Ambient Intelligence applications to achieve proper Ambient Assisted Living, and key challenges still remain to be dealt with to realize robust methods. One of the major limitations of the Ambient Intelligence systems today is the lack of semantic models of those activities on the environment, so that the system can recognize the speci c activity being performed by the user(s) and act accordingly. In this context, this thesis addresses the general problem of knowledge representation in Smart Spaces. The main objective is to develop knowledge-based models, equipped with semantics to learn, infer and monitor human behaviours in Smart Spaces. Moreover, it is easy to recognize that some aspects of this problem have a high degree of uncertainty, and therefore, the developed models must be equipped with mechanisms to manage this type of information. A fuzzy ontology and a semantic hybrid system are presented to allow modelling and recognition of a set of complex real-life scenarios where vagueness and uncertainty are inherent to the human nature of the users that perform it. The handling of uncertain, incomplete and vague data (i.e., missing sensor readings and activity execution variations, since human behaviour is non-deterministic) is approached for the rst time through a fuzzy ontology validated on real-time settings within a hybrid data-driven and knowledgebased architecture. The semantics of activities, sub-activities and real-time object interaction are taken into consideration. The proposed framework consists of two main modules: the low-level sub-activity recognizer and the high-level activity recognizer. The rst module detects sub-activities (i.e., actions or basic activities) that take input data directly from a depth sensor (Kinect). The main contribution of this thesis tackles the second component of the hybrid system, which lays on top of the previous one, in a superior level of abstraction, and acquires the input data from the rst module's output, and executes ontological inference to provide users, activities and their in uence in the environment, with semantics. This component is thus knowledge-based, and a fuzzy ontology was designed to model the high-level activities. Since activity recognition requires context-awareness and the ability to discriminate among activities in di erent environments, the semantic framework allows for modelling common-sense knowledge in the form of a rule-based system that supports expressions close to natural language in the form of fuzzy linguistic labels. The framework advantages have been evaluated with a challenging and new public dataset, CAD-120, achieving an accuracy of 90.1% and 91.1% respectively for low and high-level activities. This entails an improvement over both, entirely data-driven approaches, and merely ontology-based approaches. As an added value, for the system to be su ciently simple and exible to be managed by non-expert users, and thus, facilitate the transfer of research to industry, a development framework composed by a programming toolbox, a hybrid crisp and fuzzy architecture, and graphical models to represent and con gure human behaviour in Smart Spaces, were developed in order to provide the framework with more usability in the nal application. As a result, human behaviour recognition can help assisting people with special needs such as in healthcare, independent elderly living, in remote rehabilitation monitoring, industrial process guideline control, and many other cases. This thesis shows use cases in these areas.
Resumo:
Brain computer interface (BCI) is a kind of human machine interface, which provides a new interaction method between human and computer or other equipment. The most significant characteristic of BCI system is that its control input is brain electrical activities acquired from the brain instead of traditional input such as hands or eyes. BCI technique has rapidly developed during last two decades and it has mainly worked as an auxiliary technique to help the disable people improve their life qualities. With the appearance of low cost novel electrical devices such as EMOTIV, BCI technique has been applied to the general public through many useful applications including video gaming, virtual reality and virtual keyboard. The purpose of this research is to be familiar with EMOTIV EPOC system and make use of it to build an EEG based BCI system for controlling an industrial manipulator by means of human thought. To build a BCI system, an acquisition program based on EMOTIV EPOC system is designed and a MFC based dialog that works as an operation panel is presented. Furthermore, the inverse kinematics of RV-3SB industrial robot was solved. In the last part of this research, the designed BCI system with human thought input is examined and the results indicate that the system is running smoothly and displays clearly the motion type and the incremental displacement of the motion.
Resumo:
Human-Centered Design (HCD) is a well-recognized approach to the design of interactive computing systems that supports everyday and professional lives of people. To that end, the HCD approach put central emphasis on the explicit understanding of users and context of use by involving users throughout the entire design and development process. With mobile computing, the diversity of users as well as the variety in the spatial, temporal, and social settings of the context of use has notably expanded, which affect the effort of interaction designers to understand users and context of use. The emergence of the mobile apps era in 2008 as a result of structural changes in the mobile industry and the profound enhanced capabilities of mobile devices, further intensify the embeddedness of technology in the daily life of people and the challenges that interaction designers face to cost-efficiently understand users and context of use. Supporting interaction designers in this challenge requires understanding of their existing practice, rationality, and work environment. The main objective of this dissertation is to contribute to interaction design theories by generating understanding on the HCD practice of mobile systems in the mobile apps era, as well as to explain the rationality of interaction designers in attending to users and context of use. To achieve that, a literature study is carried out, followed by a mixed-methods research that combines multiple qualitative interview studies and a quantitative questionnaire study. The dissertation contributes new insights regarding the evolving HCD practice at an important time of transition from stationary computing to mobile computing. Firstly, a gap is identified between interaction design as practiced in research and in the industry regarding the involvement of users in context; whereas the utilization of field evaluations, i.e. in real-life environments, has become more common in academic projects, interaction designers in the industry still rely, by large, on lab evaluations. Secondly, the findings indicate on new aspects that can explain this gap and the rationality of interaction designers in the industry in attending to users and context; essentially, the professional-client relationship was found to inhibit the involvement of users, while the mental distance between practitioners and users as well as the perceived innovativeness of the designed system are suggested in explaining the inclination to study users in situ. Thirdly, the research contributes the first explanatory model on the relation between the organizational context and HCD; essentially, innovation-focused organizational strategies greatly affect the cost-effective usage of data on users and context of use. Last, the findings suggest a change in the nature of HCD in the mobile apps era, at least with universal consumer systems; evidently, the central attention on the explicit understanding of users and context of use shifts from an early requirements phase and continual activities during design and development to follow-up activities. That is, the main effort to understand users is by collecting data on their actual usage of the system, either before or after the system is deployed. The findings inform both researchers and practitioners in interaction design. In particular, the dissertation suggest on action research as a useful approach to support interaction designers and further inform theories on interaction design. With regard to the interaction design practice, the dissertation highlights strategies that encourage a more cost-effective user- and context-informed interaction design process. With the continual embeddedness of computing into people’s life, e.g. with wearable devices and connected car systems, the dissertation provides a timely and valuable view on the evolving humancentered design.