13 resultados para Inert atmosphere
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The Kraft pulping process is the dominant chemical pulping process in the world. Roughly 195 million metric tons of black liquor are produced annually as a by-product from the Kraft pulping process. Black liquor consists of spent cooking chemicals and dissolved organics from the wood and can contain up to 0.15 wt% nitrogen on dry solids basis. The cooking chemicals from black liquor are recovered in a chemical recovery cycle. Water is evaporated in the first stage of the chemical recovery cycle, so the black liquor has a dry solids content of 65-85% prior to combustion. During combustion of black liquor, a portion of the black liquor nitrogen is volatilized, finally forming N2 or NO. The rest of the nitrogen remains in the char as char nitrogen. During char conversion, fixed carbon is burned off leaving the pulping chemicals as smelt, and the char nitrogen forms mostly smelt nitrogen (cyanate, OCN-). Smelt exits the recovery boiler and is dissolved in water. The cyanate from smelt decomposes in the presence of water, forming NH3, which causes nitrogen emissions from the rest of the chemical recovery cycle. This thesis had two focuses: firstly, to determine how the nitrogen chemistry in the recovery boiler is affected by modification of black liquor; and secondly, to find out what causes cyanate formation during thermal conversion, and which parameters affect cyanate formation and decomposition during thermal conversion of black liquor. The fate of added biosludge nitrogen in chemical recovery was determined in Paper I. The added biosludge increased the nitrogen content of black liquor. At the pulp mill, the added biosludge did not increase the NO formation in the recovery boiler, but instead increased the amount of cyanate in green liquor. The increased cyanate caused more NH3 formation, which increased the NCG boiler’s NO emissions. Laboratory-scale experiments showed an increase in both NO and cyanate formation after biosludge addition. Black liquor can be modified, for example by addition of a solid biomass to increase the energy density of black liquor, or by separation of lignin from black liquor by precipitation. The precipitated lignin can be utilized in the production of green chemicals or as a fuel. In Papers II and III, laboratory-scale experiments were conducted to determine the impact of black liquor modification on NO and cyanate formation. Removal of lignin from black liquor reduced the nitrogen content of the black liquor. In most cases NO and cyanate formation decreased with increasing lignin removal; the exception was NO formation from lignin lean soda liquors. The addition of biomass to black liquor resulted in a higher nitrogen content fuel mixture, due to the higher nitrogen content of biomass compared to black liquor. More NO and cyanate were formed from the fuel mixtures than from pure black liquor. The increased amount of formed cyanate led to the hypothesis that black liquor is catalytically active and converts a portion of the nitrogen in the mixed fuel to cyanate. The mechanism behind cyanate formation during thermal conversion of black liquor was not clear before this thesis. Paper IV studies the cyanate formation of alkali metal loaded fuels during gasification in a CO2 atmosphere. The salts K2CO3, Na2CO3, and K2SO4 all promoted char nitrogen to cyanate conversion during gasification, while KCl and CaCO3 did not. It is now assumed that cyanate is formed when alkali metal carbonate or an active intermediate of alkali metal carbonate (e.g. -CO2K) reacts with the char nitrogen forming cyanate. By testing different fuels (bark, peat, and coal), each of which had a different form of organic nitrogen, it was concluded that the form of organic nitrogen in char also has an impact on cyanate formation. Cyanate can be formed during pyrolysis of black liquor, but at temperatures 900°C or above, the formed cyanate will decompose. Cyanate formation in gasifying conditions with different levels of CO2 in the atmosphere was also studied. Most of the char nitrogen was converted to cyanate during gasification at 800-900°C in 13-50% CO2 in N2, and only 5% of the initial fuel nitrogen was converted to NO during char conversion. The formed smelt cyanate was stable at 800°C 13% CO2, while it decomposed at 900°C 13% CO2. The cyanate decomposition was faster at higher temperatures and in oxygen-containing atmospheres than in an inert atmosphere. The presence of CO2 in oxygencontaining atmospheres slowed down the decomposition of cyanate. This work will provide new information on how modification of black liquor affects the nitrogen chemistry during thermal conversion of black liquor and what causes cyanate formation during thermal conversion of black liquor. The formation and decomposition of cyanate was studied in order to provide new data, which would be useful in modeling of nitrogen chemistry in the recovery boiler.
Resumo:
Torrefaction is the partial pyrolysis of wood characterised by thermal degradation of predominantly hemicellulose under inert atmosphere. Torrefaction can be likened to coffee roasting but with wood in place of beans. This relatively new process concept makes wood more like coal. Torrefaction has attracted interest because it potentially enables higher rates of co-firing in existing pulverised-coal power plants and hence greater net CO2 emission reductions. Academic and entrepreneurial interest in torrefaction has sky rocketed in the last decade. Research output has focused on the many aspects of torrefaction – from detailed chemical changes in feedstock to globally-optimised production and supply scenarios with which to sustain EU emission-cutting directives. However, despite its seemingly simple concept, torrefaction has retained a somewhat mysterious standing. Why hasn’t torrefied pellet production become fully commercialised? The question is one of feasibility. This thesis addresses this question. Herein, the feasibility of torrefaction in co-firing applications is approached from three directions. Firstly, the natural limitations imposed by the structure of wood are assessed. Secondly, the environmental impact of production and use of torrefied fuel is evaluated and thirdly, economic feasibility is assessed based on the state of the art of pellet making. The conclusions reached in these domains are as follows. Modification of wood’s chemical structure is limited by its naturally existing constituents. Consequently, key properties of wood with regards to its potential as a co-firing fuel have a finite range. The most ideal benefits gained from wood torrefaction cannot all be realised simultaneously in a single process or product. Although torrefaction at elevated pressure may enhance some properties of torrefied wood, high-energy torrefaction yields are achieved at the expense of other key properties such as heating value, grindability, equilibrium moisture content and the ability to pelletise torrefied wood. Moreover, pelletisation of even moderately torrefied fuels is challenging and achieving a standard level of pellet durability, as required by international standards, is not trivial. Despite a reduced moisture content, brief exposure of torrefied pellets to water from rainfall or emersion results in a high level of moisture retention. Based on the above findings, torrefied pellets are an optimised product. Assessment of energy and CO2-equivalent emission balance indicates that there is no environmental barrier to production and use of torrefied pellets in co-firing. A long product transport distance, however, is necessary in order for emission benefits to exceed those of conventional pellets. Substantial CO2 emission reductions appear possible with this fuel if laboratory milling results carry over to industrial scales for direct co-firing. From demonstrated state-of-the-art pellet properties, however, the economic feasibility of torrefied pellet production falls short of conventional pellets primarily due to the larger capital investment required for production. If the capital investment for torrefied pellet production can be reduced significantly or if the pellet-making issues can be resolved, the two production processes could be economically comparable. In this scenario, however, transatlantic shipping distances and a dry fuel are likely necessary for production to be viable. Based on demonstrated pellet properties to date, environmental aspects and production economics, it is concluded that torrefied pellets do not warrant investment at this time. However, from the presented results, the course of future research in this field is clear.
Resumo:
Torrefaction is moderate thermal treatment (~200-300 °C) of biomass in an inert atmosphere. The torrefied fuel offers advantages to traditional biomass, such as higher heating value, reduced hydrophilic nature, increased its resistance to biological decay, and improved grindability. These factors could, for instance, lead to better handling and storage of biomass and increased use of biomass in pulverized combustors. In this work, we look at several aspects of changes in the biomass during torrefaction. We investigate the fate of carboxylic groups during torrefaction and its dependency to equilibrium moisture content. The changes in the wood components including carbohydrates, lignin, extractable materials and ashforming matters are also studied. And at last, the effect of K on torrefaction is investigated and then modeled. In biomass, carboxylic sites are partially responsible for its hydrophilic characteristic. These sites are degraded to varying extents during torrefaction. In this work, methylene blue sorption and potentiometric titration were applied to measure the concentration of carboxylic groups in torrefied spruce wood. The results from both methods were applicable and the values agreed well. A decrease in the equilibrium moisture content at different humidity was also measured for the torrefied wood samples, which is in good agreement with the decrease in carboxylic group contents. Thus, both methods offer a means of directly measuring the decomposition of carboxylic groups in biomass during torrefaction as a valuable parameter in evaluating the extent of torrefaction. This provides new information to the chemical changes occurring during torrefaction. The effect of torrefaction temperature on the chemistry of birch wood was investigated. The samples were from a pilot plant at Energy research Center of the Netherlands (ECN). And in that way they were representative of industrially produced samples. Sugar analysis was applied to analyze the hemicellulose and cellulose content during torrefaction. The results show a significant degradation of hemicellulose already at 240 °C, while cellulose degradation becomes significant above 270 °C torrefaction. Several methods including Klason lignin method, solid state NMR and Py-GC-MS analyses were applied to measure the changes in lignin during torrefaction. The changes in the ratio of phenyl, guaiacyl and syringyl units show that lignin degrades already at 240 °C to a small extent. To investigate the changes in the extractives from acetone extraction during torrefaction, gravimetric method, HP-SEC and GC-FID followed by GC-MS analysis were performed. The content of acetone-extractable material increases already at 240 °C torrefaction through the degradation of carbohydrate and lignin. The molecular weight of the acetone-extractable material decreases with increasing the torrefaction temperature. The formation of some valuable materials like syringaresinol or vanillin is also observed which is important from biorefinery perspective. To investigate the change in the chemical association of ash-forming elements in birch wood during torrefaction, chemical fractionation was performed on the original and torrefied birch samples. These results give a first understanding of the changes in the association of ashforming elements during torrefaction. The most significant changes can be seen in the distribution of calcium, magnesium and manganese, with some change in water solubility seen in potassium. These changes may in part be due to the destruction of carboxylic groups. In addition to some changes in water and acid solubility of phosphorous, a clear decrease in the concentration of both chlorine and sulfur was observed. This would be a significant additional benefit for the combustion of torrefied biomass. Another objective of this work is studying the impact of organically bound K, Na, Ca and Mn on mass loss of biomass during torrefaction. These elements were of interest because they have been shown to be catalytically active in solid fuels during pyrolysis and/or gasification. The biomasses were first acid washed to remove the ash-forming matters and then organic sites were doped with K, Na, Ca or Mn. The results show that K and Na bound to organic sites can significantly increase the mass loss during torrefaction. It is also seen that Mn bound to organic sites increases the mass loss and Ca addition does not influence the mass loss rate on torrefaction. This increase in mass loss during torrefaction with alkali addition is unlike what has been found in the case of pyrolysis where alkali addition resulted in a reduced mass loss. These results are important for the future operation of torrefaction plants, which will likely be designed to handle various biomasses with significantly different contents of K. The results imply that shorter retention times are possible for high K-containing biomasses. The mass loss of spruce wood with different content of K was modeled using a two-step reaction model based on four kinetic rate constants. The results show that it is possible to model the mass loss of spruce wood doped with different levels of K using the same activation energies but different pre-exponential factors for the rate constants. Three of the pre-exponential factors increased linearly with increasing K content, while one of the preexponential factors decreased with increasing K content. Therefore, a new torrefaction model was formulated using the hemicellulose and cellulose content and K content. The new torrefaction model was validated against the mass loss during the torrefaction of aspen, miscanthus, straw and bark. There is good agreement between the model and the experimental data for the other biomasses, except bark. For bark, the mass loss of acetone extractable material is also needed to be taken into account. The new model can describe the kinetics of mass loss during torrefaction of different types of biomass. This is important for considering fuel flexibility in torrefaction plants.
Resumo:
Selostus: Ilmakehä-, sää- ja ilmastoskenaarioiden kehittäminen pohjoisille alueille
Resumo:
This work focuses on the study of the determination on the possibilities of controlling the required moisture within the inside of film sealed packages. The task is based on the challenges faced by fresh food producers in actualizing a longer product shelf-life coupled with the growing complex desires coming from consumers in the aspect of quality. One way to realize this is by proper evaluation on the use of the flexible plastic films through permeation measurements on the required amount of moisture penetrating through the plastic film with the application of microperforation. A packaging material requires proper interaction on moisture transmission, between the product and the outside environment. The plastic film material that stands between, fresh fruits, vegetables and the outside environment could have appropriate respiration rates through possible micro holes. This work simulates similar process with the aid of water vapor transmission rate (WVTR) experiment using anhydrous CaCl2 as the desiccant, in studying the WVTR values of various perforated film materials at different conditions of storage (standard, fridge, and tropical conditions). However, the results showed absorption rates of water vapor at various conditions in grams of H2O/m2/24h.
Resumo:
The purpose of the study is: (1) to describe how nursing students' experienced their clinical learning environment and the supervision given by staff nurses working in hospital settings; and (2) to develop and test an evaluation scale of Clinical Learning Environment and Supervision (CLES). The study has been carried out in different phases. The pilot study (n=163) explored the association between the characteristics of a ward and its evaluation as a learning environment by students. The second version of research instrument (which was developed by the results of this pilot study) were tested by an expert panel (n=9 nurse teachers) and test-retest group formed by student nurses (n=38). After this evaluative phase, the CLES was formed as the basic research instrument for this study and it was tested with the Finnish main sample (n=416). In this phase, a concurrent validity instrument (Dunn & Burnett 1995) was used to confirm the validation process of CLES. The international comparative study was made by comparing the Finnish main sample with a British sample (n=142). The international comparative study was necessary for two reasons. In the instrument developing process, there is a need to test the new instrument in some other nursing culture. Other reason for comparative international study is the reflecting the impact of open employment markets in the European Union (EU) on the need to evaluate and to integrate EU health care educational systems. The results showed that the individualised supervision system is the most used supervision model and the supervisory relationship with personal mentor is the most meaningful single element of supervision evaluated by nursing students. The ward atmosphere and the management style of ward manager are the most important environmental factors of the clinical ward. The study integrates two theoretical elements - learning environment and supervision - in developing a preliminary theoretical model. The comparative international study showed that, Finnish students were more satisfied and evaluated their clinical placements and supervision with higher scores than students in the United Kingdom (UK). The difference between groups was statistical highly significant (p= 0.000). In the UK, clinical placements were longer but students met their nurse teachers less frequently than students in Finland. Arrangements for supervision were similar. This research process has produced the evaluation scale (CLES), which can be used in research and quality assessments of clinical learning environment and supervision in Finland and in the UK. CLES consists of 27 items and it is sub-divided into five sub-dimensions. Cronbach's alpha coefficient varied from high 0.94 to marginal 0.73. CLES is a compact evaluation scale and user-friendliness makes it suitable for continuing evaluation.
Resumo:
In Finland, European Union membership and economic globalisation have changed the position of regions from closed territorial systems to nodes of open international networks. The increasing complexity of cities as globalised knowledge centres and functionally specialised and diversified rural areas, and on the other hand growing disparities between prosperous urban cores and lagging peripheral areas are also essential features in contemporary regional development. These trends have produced new needs to promote mutual dialogue between cities and the countryside in western market economies. Urban-rural interaction is an idea which was developed in the late 1990s within regional policy to pull together these new challenges to regional development and handle cities and the countryside as a whole. The aim of my study is to conceptualise the idea of urban-rural interaction, explain the phenomenon theoretically, clarify past and present urban and rural development and analyse regional policies from the interaction angle. The ultimate purpose is to illustrate the existence and nature of particular interaction policy in a globalising society. The general method is discourse analysis, which I use in three cases: Central Finland, South-Ostrobothnia and South-West Finland. Theoretically I have a two-dimensional approach. On the first hand I use World-System theory to explain how the global economy is moulding urban and rural structures at the regional level. On the other hand I use regime theory to explain local political actions and practises between cities and the countryside under the overlapping pressures deriving from reformulated regional structures and policies.
Adaptation to globalisation in Finland has been carried out by strengthening urban centres. The stress in regional policy has been in urban development. The development of the countryside has mostly been implemented by a separate rural policy. At the end of the 1990s and early 2000s Finnish cities have actually shown themselves to be competitive in global markets. The drawbacks of the new growth centre policy have been the sparse network of prosperous cities and their weak spreading effects, which have hindered comprehensive regional development. Tensions between urban and rural areas have also deepened. In this situation the interaction policy is used as a way of balancing development and moderate conflicts within the regions. From this point of view urban-rural interaction can be seen as a way of tackling the challenges of globalisation.
On the other hand the results emphasise that actors involved in regional development still believe, although the hegemonic discourse is on urban policy, that there are opportunities to stimulate progress in the countryside as well. In the situation where regional authorities control development resources, rural development can be successful only if rural actors manage to establish fruitful relationships with their urban partners. This is also the weakness of the programme-based regional policy. If rural municipalities or other actors are for any reason incapable of building development regimes with cities, the offers of interaction policy will be useless.
The problem of the interaction policy is that the focus and methods of it have so far been rather underdeveloped. In order to improve the efficiency of the interaction policy, further research should concentrate on the social processes which define the position of cities and the countryside as partners of interaction, and practises which promote or prohibit the possibilities of developing the interaction policy. The efforts to define different contents of urban-rural interaction or promote interaction projects should not have such an important role in the future as they have had so far. Instead, the focus of interaction policy should be on questions such as how to manage the political tensions between town and country and how to create a positive atmosphere for regional policy where the needs of urban and rural development are promoted equally.
Resumo:
iLEAPS (Integrated Land Ecosystem-Atmosphere Processes Study) on kansainvälinen tutkimusohjelma, jonka tavoitteena on parantaa maa-ilmakehä rajapinnan tuntemusta. Opinnäytetyönä on tehty iLEAPS:ille "jäsenrekisteri"-sovellus, jota on myöhemmin muokattu parantamalla muunmuassa käyttöliittymää. Lisäksi ohjelman eri palaset koottiin yhteen moduuleiksi, jonne on kerätty yhteen kuuluvia asioita kuten funktiot ja uuteen versioon tehdyt luokat. Sovellus on toteutettu PHP/MySQL-työkaluilla. Ohjelma koostuu kahdesta osasta: julkisilta www-sivuilta löytyvästä lomakkeesta sekä varsinaisesta tietokannan hallintatyökalusta. Lomakkeella pystyy ilmoittamaan itsensä halukkaaksi liittymään mukaan postituslistalle ja antamaan iLEAPS:ille tarvittavat tiedot itsestään. Hallintatyökalulla voidaan lisätä, poistaa ja muokata henkilöiden tietoja. Työkalun avulla voidaan myös lähettää halutuille ihmisille sähköpostia sekä tulostaa tarvittavia tietoja.
Resumo:
This thesis concentrates on the topological defects of spin-1 and spin-2 Bose-Einstein condensates, the ground states of spin-3 condensates, and the inert states of spinor condensates with arbitrary spin. Our work is based on the description of a spinor condensate of spin-S atoms in terms of a state vector of a spin-S particle. The results of the homotopy theory are used to study the existence and structure of the topological defects in spinor condensates. We construct examples of defects, study their energetics, and examine how their stability is affected by the presence of an external magnetic field. The ground states of spin-3 condensates are calculated using analytical and numerical means. Special emphasis is put on the ground states of a chromium condensate, whose dependence on the magnetic dipole-dipole interaction is studied. A simple geometrical method for the calculation of inert states of spinor condensates is presented. This method is used to find candidates for the ground states of spin-S condensates.
Resumo:
Opinnäytteeni pohtii esitystä ja työtapaa, jossa lähtökohtana ovat työryhmän muistot. Työryhmän jäsenten yksityisistä muistoista muokataan julkinen esitys. Tutkin esityksen valmistamista muistoja hyväksikäyttäen sekä tuon esille omia kokemuksia tällaisesta työskentelystä. Käytän muistoja lähtökohtana taiteelliseen lopputulokseen, joka tässä tapauksessa on teatteriesitys. Koen muistot luonnonvarana, joita hyödyntämällä saadaan ainutkertainen, mielenkiintoinen esitys. Esitys valmistetaan ryhmätyönä, yhden työryhmän jäsenen kuitenkin toimiessa projektissa ohjaajana. Pidän esitysprosessia tärkeänä kaikille asianosaisille, sillä sen aikana kohdataan kunkin jäsenen muisto uudelleen ja siitä muokkautuu uusi, julkinen tulkinta, joka voi taas synnyttää samaistumista katsojan omassa muistomaailmassa. Teatterin tekeminen on muodon antamista jollekin asialle. Tässä prosessissa annetaan muoto ennalta valitulle teemalle työryhmän muistoja rakennusmateriaaleina käyttäen. Prosessi on avoin ja siinä ohjaajalla ei ole etukäteissuunnitelmaa esityksen kulusta muutoin kuin teeman suhteen. Ohjaaja ei ole suunnitellut projektia valmiiksi, vaan yhdessä työryhmän kanssa hän työskentelee prosessoiden sitä materiaalia, mikä nousee työryhmän jäsenten omista muistoista.