9 resultados para Increasing failure rate
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
For more than a decade, researchers have been aware of the increased pace of small-firm internationalization and the greater effect of these rapidly growing small businesses on the wealth, international trade, and job-creation opportunities of countries. Due to the small size of the home market, Finnish companies have been generally considered highly interested in internationalization. One particular domain in which rapid internationalization has been considered feasible is the global software business, with its knowledge-intensive nature and high growth potential. However, over time the failure rate of small entrepreneurial firms has remained especially high in high-technology markets. One of the reasons for this seems to lie in the fact that these companies are often formed by people with a strong technological background but limited competences in other areas. Further, research on the marketing capabilities of rapidly internationalizing high-tech firms has been scarce thus far. In addition, while there is much research on the first years of operations of rapidly internationalizing companies, it is not well known what becomes of them later on. Therefore, there is a need for more investigation into the managerial mindset, competences and decision-making in these small companies, especially from the perspective of how they acquire and exploit market knowledge, and enhance their networking capabilities in order to promote international expansion. The present study focuses on market orientation in small software firms that internationalize their operations rapidly in global software markets. It builds on qualitative data to illustrate how these companies develop their market-oriented product-market strategies during the process of increasing international commitment. It also shows how they manage their network relationships in order to be able to offer better customer service and to thrive in the fierce global competition. The study was conducted in the empirical context of Finnish small software companies, and the main data consists of interviews with top managers in these businesses. The interviews were designed to cover a minimum period of five years of the company's international operations, thus offering a retrospective in-depth perspective on market orientation, internationalization and partnerships in the given context. One particular focus is on less successfully internationalized software companies, and the challenges they face when approaching international markets. This study makes a significant contribution to the literature on market orientation for several reasons. First, building on data from the software industry, it clarifies the existing theory in the context of rapid internationalization and network relationships. Secondly, it provides a good body of evidence on market orientation in both successfully and less successfully internationalized companies, and identifies the key related differences between the two company groups. Thirdly, it highlights the importance of inter-firm networks in the rapid internationalization of small software firms, providing companies with important market knowledge and, in some cases, management challenges. Fourthly, this investigation clarifies market orientation in the context of different software-product strategies, thus, combining the perspectives of market orientation in both manufacturing and services. In sum, the results of the study are significant for both small software firms and public-policy makers since they shed light on the market-oriented managerial mindset and the market-information gathering and sharing processes that are needed in successful rapid internationalization.
Resumo:
Dynamic behavior of bothisothermal and non-isothermal single-column chromatographic reactors with an ion-exchange resin as the stationary phase was investigated. The reactor performance was interpreted by using results obtained when studying the effect of the resin properties on the equilibrium and kinetic phenomena occurring simultaneously in the reactor. Mathematical models were derived for each phenomenon and combined to simulate the chromatographic reactor. The phenomena studied includes phase equilibria in multicomponent liquid mixture¿ion-exchange resin systems, chemicalequilibrium in the presence of a resin catalyst, diffusion of liquids in gel-type and macroporous resins, and chemical reaction kinetics. Above all, attention was paid to the swelling behavior of the resins and how it affects the kinetic phenomena. Several poly(styrene-co-divinylbenzene) resins with different cross-link densities and internal porosities were used. Esterification of acetic acid with ethanol to produce ethyl acetate and water was used as a model reaction system. Choosing an ion-exchange resin with a low cross-link density is beneficial inthe case of the present reaction system: the amount of ethyl acetate as well the ethyl acetate to water mole ratio in the effluent stream increase with decreasing cross-link density. The enhanced performance of the reactor is mainly attributed to increasing reaction rate, which in turn originates from the phase equilibrium behavior of the system. Also mass transfer considerations favor the use ofresins with low cross-link density. The diffusion coefficients of liquids in the gel-type ion-exchange resins were found to fall rapidly when the extent of swelling became low. Glass transition of the polymer was not found to significantlyretard the diffusion in sulfonated PS¿DVB ion-exchange resins. It was also shown that non-isothermal operation of a chromatographic reactor could be used to significantly enhance the reactor performance. In the case of the exothermic modelreaction system and a near-adiabatic column, a positive thermal wave (higher temperature than in the initial state) was found to travel together with the reactive front. This further increased the conversion of the reactants. Diffusion-induced volume changes of the ion-exchange resins were studied in a flow-through cell. It was shown that describing the swelling and shrinking kinetics of the particles calls for a mass transfer model that explicitly includes the limited expansibility of the polymer network. A good description of the process was obtained by combining the generalized Maxwell-Stefan approach and an activity model that was derived from the thermodynamics of polymer solutions and gels. The swelling pressure in the resin phase was evaluated by using a non-Gaussian expression forthe polymer chain length distribution. Dimensional changes of the resin particles necessitate the use of non-standard mathematical tools for dynamic simulations. A transformed coordinate system, where the mass of the polymer was used as a spatial variable, was applied when simulating the chromatographic reactor columns as well as the swelling and shrinking kinetics of the resin particles. Shrinking of the particles in a column leads to formation of dead volume on top of the resin bed. In ordinary Eulerian coordinates, this results in a moving discontinuity that in turn causes numerical difficulties in the solution of the PDE system. The motion of the discontinuity was eliminated by spanning two calculation grids in the column that overlapped at the top of the resin bed. The reactive and non-reactive phase equilibrium data were correlated with a model derived from thethermodynamics of polymer solution and gels. The thermodynamic approach used inthis work is best suited at high degrees of swelling because the polymer matrixmay be in the glassy state when the extent of swelling is low.
Resumo:
Sähkönsiirtoyritysten kunnossapidon taloudellinen malli eli SKUTMA, on sähköverkkoyhtiöille suunniteltu luotettavuuspohjainen kunnossapitomalli, mikä priorisoi ja ajoittaa sähkönjakeluverkon komponenttien huolto- ja investointiajankohdat. Malli hyödyntää dynaamisen optimoinnin algoritmia kustannusminimien löytämiseksi tarkastelujaksolta ja simuloi komponenttien rappeutumasta rappeutumismallin avulla. Tässä diplomityössä on kehitetty kunnossapito-ohjelma SKUTMA-mallin pohjalta, minkä avulla tutkitaan mallin toimivuutta oikeilla johtolähdöillä ja sen hyödyntämistä sähköverkkojen kunnossapidon suunnittelussa. Työssä käydään läpi myös kunnossapitoohjelman laskenta metodiikkaa ja sen ominaisuuksia. Tämän työn lopputuloksena saadaan selkeä kuva mallin toiminnasta, käytettävyydestä ja jatkokehityspotentiaalista.
Resumo:
The maintenance of electric distribution network is a topical question for distribution system operators because of increasing significance of failure costs. In this dissertation the maintenance practices of the distribution system operators are analyzed and a theory for scheduling maintenance activities and reinvestment of distribution components is created. The scheduling is based on the deterioration of components and the increasing failure rates due to aging. The dynamic programming algorithm is used as a solving method to maintenance problem which is caused by the increasing failure rates of the network. The other impacts of network maintenance like environmental and regulation reasons are not included to the scope of this thesis. Further the tree trimming of the corridors and the major disturbance of the network are not included to the problem optimized in this thesis. For optimizing, four dynamic programming models are presented and the models are tested. Programming is made in VBA-language to the computer. For testing two different kinds of test networks are used. Because electric distribution system operators want to operate with bigger component groups, optimal timing for component groups is also analyzed. A maintenance software package is created to apply the presented theories in practice. An overview of the program is presented.
Resumo:
In photosynthesis, light energy is converted to chemical energy, which is consumed for carbon assimilation in the Calvin-Benson-Bassham (CBB) cycle. Intensive research has significantly advanced the understanding of how photosynthesis can survive in the ever-changing light conditions. However, precise details concerning the dynamic regulation of photosynthetic processes have remained elusive. The aim of my thesis was to specify some molecular mechanisms and interactions behind the regulation of photosynthetic reactions under environmental fluctuations. A genetic approach was employed, whereby Arabidopsis thaliana mutants deficient in specific photosynthetic protein components were subjected to adverse light conditions and assessed for functional deficiencies in the photosynthetic machinery. I examined three interconnected mechanisms: (i) auxiliary functions of PsbO1 and PsbO2 isoforms in the oxygen evolving complex of photosystem II (PSII), (ii) the regulatory function of PGR5 in photosynthetic electron transfer and (iii) the involvement of the Calcium Sensing Receptor CaS in photosynthetic performance. Analysis of photosynthetic properties in psbo1 and psbo2 mutants demonstrated that PSII is sensitive to light induced damage when PsbO2, rather than PsbO1, is present in the oxygen evolving complex. PsbO1 stabilizes PSII more efficiently compared to PsbO2 under light stress. However, PsbO2 shows a higher GTPase activity compared to PsbO1, and plants may partially compensate the lack of PsbO1 by increasing the rate of the PSII repair cycle. PGR5 proved vital in the protection of photosystem I (PSI) under fluctuating light conditions. Biophysical characterization of photosynthetic electron transfer reactions revealed that PGR5 regulates linear electron transfer by controlling proton motive force, which is crucial for the induction of the photoprotective non-photochemical quenching and the control of electron flow from PSII to PSI. I conclude that PGR5 controls linear electron transfer to protect PSI against light induced oxidative damage. I also found that PGR5 physically interacts with CaS, which is not needed for photoprotection of PSII or PSI in higher plants. Rather, transcript profiling and quantitative proteomic analysis suggested that CaS is functionally connected with the CBB cycle. This conclusion was supported by lowered amounts of specific calciumregulated CBB enzymes in cas mutant chloroplasts and by slow electron flow to PSI electron acceptors when leaves were reilluminated after an extended dark period. I propose that CaS is required for calcium regulation of the CBB cycle during periods of darkness. Moreover, CaS may also have a regulatory role in the activation of chloroplast ATPase. Through their diverse interactions, components of the photosynthetic machinery ensure optimization of light-driven electron transport and efficient basic production, while minimizing the harm caused by light induced photodamage.
Resumo:
This 45th volume deals with the development of the Russian rouble, which suffered a severe depreciation crisis in 1998. In the aftermath of this event, a strong investment boom started in Russia. The new devalued rouble exchange rate gave price competitiveness to local industry. In addition to that, increasing export prices of Russian oil and natural gas deliveries have contributed to economic growth lately. Amid this boom period, inflationary pressure has remained high. Price increases have been higher than in the EU, Russia’s main trading partner. However, rouble/euro exchange rate has remained nominally rather stable in the current decade. This means, that rouble appreciates against euro in real terms, which is weakening Russia’s international competitiveness.
Resumo:
NORDIn julkaisu 45 käsittelee ruplan kehitystä. Vuonna 1998 rupla kärsi rajusta rahanarvon alenemisesta, minkä jälkiseuraksena investointi alkoi Venäjällä kasvaa. Uusi devalvoitu ruplan vaihtokurssi toi hintakilpailykykyä paikalliselle teollisuudelle. Tämän lisäksi Venäjän öljyn vientihintojen nousu ja maakaasujakelu ovat edesauttaneet taloudellista kasvua viime aikoina. Tämän noususuhdanteen vallitessa inflaatiopaine on pysynyt korkealla. Hinnannousut ovat olleet korkeampia kuinEU:ssa, Venäjän pääkauppakumppanilla. Kuitenkin, ruplan/euron vaihtokurssit ovat pysyneet nimellisesti melko vakaina tällä vuosikymmenellä. Tämä tarkoittaa, että todellisuudessa rupla vahvistuu euroa vastaan, mikä heikentää Venäjän kansainvälistä kilpailykykyä.
Resumo:
Centrifugal pumps are widely used in industrial and municipal applications, and they are an important end-use application of electric energy. However, in many cases centrifugal pumps operate with a significantly lower energy efficiency than they actually could, which typically has an increasing effect on the pump energy consumption and the resulting energy costs. Typical reasons for this are the incorrect dimensioning of the pumping system components and inefficiency of the applied pump control method. Besides the increase in energy costs, an inefficient operation may increase the risk of a pump failure and thereby the maintenance costs. In the worst case, a pump failure may lead to a process shutdown accruing additional costs. Nowadays, centrifugal pumps are often controlled by adjusting their rotational speed, which affects the resulting flow rate and output pressure of the pumped fluid. Typically, the speed control is realised with a frequency converter that allows the control of the rotational speed of an induction motor. Since a frequency converter can estimate the motor rotational speed and shaft torque without external measurement sensors on the motor shaft, it also allows the development and use of sensorless methods for the estimation of the pump operation. Still today, the monitoring of pump operation is based on additional measurements and visual check-ups, which may not be applicable to determine the energy efficiency of the pump operation. This doctoral thesis concentrates on the methods that allow the use of a frequency converter as a monitoring and analysis device for a centrifugal pump. Firstly, the determination of energy-efficiency- and reliability-based limits for the recommendable operating region of a variable-speed-driven centrifugal pump is discussed with a case study for the laboratory pumping system. Then, three model-based estimation methods for the pump operating location are studied, and their accuracy is determined by laboratory tests. In addition, a novel method to detect the occurrence of cavitation or flow recirculation in a centrifugal pump by a frequency converter is introduced. Its sensitivity compared with known cavitation detection methods is evaluated, and its applicability is verified by laboratory measurements for three different pumps and by using two different frequency converters. The main focus of this thesis is on the radial flow end-suction centrifugal pumps, but the studied methods can also be feasible with mixed and axial flow centrifugal pumps, if allowed by their characteristics.
Resumo:
The purpose of this master’s thesis is to gain an understanding of passive safety systems’ role in modern nuclear reactors projects and to research the failure modes of passive decay heat removal safety systems which use phenomenon of natural circulation. Another purpose is to identify the main physical principles and phenomena which are used to establish passive safety tools in nuclear power plants. The work describes passive decay heat removal systems used in AES-2006 project and focuses on the behavior of SPOT PG system. The descriptions of the main large-scale research facilities of the passive safety systems of the AES-2006 power plant are also included. The work contains the calculations of the SPOT PG system, which was modeled with thermal-hydraulic system code TRACE. The dimensions of the calculation model are set according to the dimensions of the real SPOT PG system. In these calculations three parameters are investigated as a function of decay heat power: the pressure of the system, the natural circulation mass flow rate around the closed loop, and the level of liquid in the downcomer. The purpose of the calculations is to test the ability of the SPOT PG system to remove the decay heat from the primary side of the nuclear reactor in case of failure of one, two, or three loops out of four. The calculations show that three loops of the SPOT PG system have adequate capacity to provide the necessary level of safety. In conclusion, the work supports the view that passive systems could be widely spread in modern nuclear projects.