4 resultados para INVERSE-EMULSION POLYMERIZATION

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the theory part the membrane emulsification was studied. Emulsions are used in many industrial areas. Traditionally emulsions are prepared by using high shear in rotor-stator systems or in high pressure homogenizer systems. In membrane emulsification two immiscible liquids are mixed by pressuring one liquid through the membrane into the other liquid. With this technique energy could be saved, more homogeneous droplets could be formed and the amount of surfactant could be decreased. Ziegler-Natta and single-site catalysts are used in olefin polymerization processes. Nowadays, these catalysts are prepared according to traditional mixing emulsification. More homogeneous catalyst particles that have narrower particle size distribution might be prepared with membrane emulsification. The aim of the experimental part was to examine the possibility to prepare single site polypropylene catalyst using membrane emulsification technique. Different membrane materials and solidification techniques of the emulsion were examined. Also the toluene-PFC phase diagram was successfully measured during this thesis work. This phase diagram was used for process optimization. The polytetrafluoroethylene membranes had the largest contact angles with toluene and also the biggest difference between the contact angles measured with PFC and toluene. Despite of the contact angle measurement results no significant difference was noticed between particles prepared using PTFE membrane or metal sinter. The particle size distributions of catalyst prepared in these tests were quite wide. This would probably be fixed by using a membrane with a more homogeneous pore size distribution. It is also possible that the solidification rate has an effect on the particle sizes and particle morphology. When polymeric membranes are compared PTFE is probably still the best material for the process as it had the best chemical durability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditionellt har man ansett att Ziegler-Natta katalysatorer för framställning av polypropen bör ha stor inre yta och hög porositet för att ge hög aktivitet och bra polymerpartikelmorfologi. Den av Borealis utvecklade Sirius emulsionsbaserade katalysatortillverkningsteknologin ger katalysatorer utan mätbar inre yta och porositet. Katalysatorn ger, trots sin kompakthet, polymerpartiklar med utmärkt morfologi och har hög aktivitet. Sirius katalysatorns prestanda, beträffande polymerisationskinetik och polymerstruktur, undersöktes i detta doktorsarbete. En jämn och kontrollerad tidig fragmentering av katalysatorn är av största vikt för att uppnå bra partikelmorfologi i en kommersiell process. Det visades att fragmenteringen av Sirius katalysatorn under de första sekunderna och minuterna av reaktionen framskred på ett homogent sätt. Oligomerhalten i den slutliga produkten är viktig i många applikationer, tex. i applikationer där polymeren kommer i kontakt med mat. Polymerer producerade med Sirius katalysatorn hade en låg oligomerhalt på grund av den smala molekylviktsfördelningen. Analys av kedjeändorna avslöjade att Sirius katalysatorn hade en hög frekvens av kedjeöverföring till monomer, vilket förklarade Sirius katalysatorns något begränsade förmåga att producera polymerer med hög molekylvikt. Sampolymerer av propen och eten producerade med Sirius uppvisade jämnare eten fördelning mellan långa och korta kedjor samt en mera randomiserad fördelning av eten längs med kedjorna än med den konventionella referenskatalysatorn. Tillsammans med den smala molekylviktsfördelningen indikerade resultaten att fördelningen av typer av aktiva centrum i Sirius katalysatorn är smal. Då man producerar polypropen med hög slagseghet skall polymerpartiklarna ha hög porositet för att kunna ackumulera eten/propen gummit. SiO2 nanopartiklar tillsatta under framställningen av Sirius katalysatorn ökade polymerpartikelns porositet, vilket möjliggjorde en dramatisk ökning av gummihalten.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statistical analyses of measurements that can be described by statistical models are of essence in astronomy and in scientific inquiry in general. The sensitivity of such analyses, modelling approaches, and the consequent predictions, is sometimes highly dependent on the exact techniques applied, and improvements therein can result in significantly better understanding of the observed system of interest. Particularly, optimising the sensitivity of statistical techniques in detecting the faint signatures of low-mass planets orbiting the nearby stars is, together with improvements in instrumentation, essential in estimating the properties of the population of such planets, and in the race to detect Earth-analogs, i.e. planets that could support liquid water and, perhaps, life on their surfaces. We review the developments in Bayesian statistical techniques applicable to detections planets orbiting nearby stars and astronomical data analysis problems in general. We also discuss these techniques and demonstrate their usefulness by using various examples and detailed descriptions of the respective mathematics involved. We demonstrate the practical aspects of Bayesian statistical techniques by describing several algorithms and numerical techniques, as well as theoretical constructions, in the estimation of model parameters and in hypothesis testing. We also apply these algorithms to Doppler measurements of nearby stars to show how they can be used in practice to obtain as much information from the noisy data as possible. Bayesian statistical techniques are powerful tools in analysing and interpreting noisy data and should be preferred in practice whenever computational limitations are not too restrictive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesoporous metal oxides are nowadays widely used in various technological applications, for instance in catalysis, biomolecular separations and drug delivery. A popular technique used to synthesize mesoporous metal oxides is the nanocasting process. Mesoporous metal oxide replicas are obtained from the impregnation of a porous template with a metal oxide precursor followed by thermal treatment and removal of the template by etching in NaOH or HF solutions. In a similar manner to the traditional casting wherein the product inherits the features of the mold, the metal oxide replicas are supposed to have an inverse structure of the starting porous template. This is however not the case, as broken or deformed particles and other structural defects have all been experienced during nanocasting experiments. Although the nanocasting technique is widely used, not all the processing steps are well understood. Questions over the fidelity of replication and morphology control are yet to be adequately answered. This work therefore attempts to answer some of these questions by elucidating the nanocasting process, pin pointing the crucial steps involved and how to harness this knowledge in making wholesome replicas which are a true replication of the starting templates. The rich surface chemistry of mesoporous metal oxides is an important reason why they are widely used in applications such as catalysis, biomolecular separation, etc. At times the surface is modified or functionalized with organic species for stability or for a particular application. In this work, nanocast metal oxides (TiO2, ZrO2 and SnO2) and SiO2 were modified with amino-containing molecules using four different approaches, namely (a) covalent bonding of 3-aminopropyltriethoxysilane (APTES), (b) adsorption of 2-aminoethyl dihydrogen phosphate (AEDP), (c) surface polymerization of aziridine and (d) adsorption of poly(ethylenimine) (PEI) through electrostatic interactions. Afterwards, the hydrolytic stability of each functionalization was investigated at pH 2 and 10 by zeta potential measurements. The modifications were successful except for the AEDP approach which was unable to produce efficient amino-modification on any of the metal oxides used. The APTES, aziridine and PEI amino-modifications were fairly stable at pH 10 for all the metal oxides tested while only AZ and PEI modified-SnO2 were stable at pH 2 after 40 h. Furthermore, the functionalized metal oxides (SiO2, Mn2O3, ZrO2 and SnO2) were packed into columns for capillary liquid chromatography (CLC) and capillary electrochromatography (CEC). Among the functionalized metal oxides, aziridinefunctionalized SiO2, (SiO2-AZ) showed good chemical stability, and was the most useful packing material in both CLC and CEC. Lastly, nanocast metal oxides were synthesized for phosphopeptide enrichment which is a technique used to enrich phosphorylated proteins in biological samples prior to mass spectrometry analysis. By using the nanocasting technique to prepare the metal oxides, the surface area was controlled within a range of 42-75 m2/g thereby enabling an objective comparison of the metal oxides. The binding characteristics of these metal oxides were compared by using samples with different levels of complexity such as synthetic peptides and cell lysates. The results show that nanocast TiO2, ZrO2, Fe2O3 and In2O3 have comparable binding characteristics. Furthermore, In2O3 which is a novel material in phosphopeptide enrichment applications performed comparably with standard TiO2 which is the benchmark for such phosphopeptide enrichment procedures. The performance of the metal oxides was explained by ranking the metal oxides according to their isoelectric points and acidity. Overall, the clarification of the nanocasting process provided in this work will aid the synthesis of metal oxides with true fidelity of replication. Also, the different applications of the metal oxides based on their surface interactions and binding characteristics show the versatility of metal oxide materials. Some of these results can form the basis from which further applications and protocols can be developed.