99 resultados para INTERMEDIATE MOMENTUM-TRANSFER
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Crystal growth is an essential phase in crystallization kinetics. The rate of crystal growth provides significant information for the design and control of crystallization processes; nevertheless, obtaining accurate growth rate data is still challenging due to a number of factors that prevail in crystal growth. In industrial crystallization, crystals are generally grown from multi-componentand multi-particle solutions under complicated hydrodynamic conditions; thus, it is crucial to increase the general understanding of the growth kinetics in these systems. The aim of this work is to develop a model of the crystal growth rate from solution. An extensive literature review of crystal growth focuses on themodelling of growth kinetics and thermodynamics, and new measuring techniques that have been introduced in the field of crystallization. The growth of a singlecrystal is investigated in binary and ternary systems. The binary system consists of potassium dihydrogen phosphate (KDP, crystallizing solute) and water (solvent), and the ternary system includes KDP, water and an organic admixture. The studied admixtures, urea, ethanol and 1-propanol, are employed at relatively highconcentrations (of up to 5.0 molal). The influence of the admixtures on the solution thermodynamics is studied using the Pitzer activity coefficient model. Theprediction method of the ternary solubility in the studied systems is introduced and verified. The growth rate of the KDP (101) face in the studied systems aremeasured in the growth cell as a function of supersaturation, the admixture concentration, the solution velocity over a crystal and temperature. In addition, the surface morphology of the KDP (101) face is studied using ex situ atomic force microscopy (AFM). The crystal growth rate in the ternary systems is modelled on the basis of the two-step growth model that contains the Maxwell-Stefan (MS) equations and a surface-reaction model. This model is used together with measuredcrystal growth rate data to develop a new method for the evaluation of the model parameters. The validation of the model is justified with experiments. The crystal growth rate in an imperfectly mixed suspension crystallizer is investigatedusing computational fluid dynamics (CFD). A solid-liquid suspension flow that includes multi-sized particles is described by the multi-fluid model as well as by a standard k-epsilon turbulence model and an interface momentum transfer model. The local crystal growth rate is determined from calculated flow information in a diffusion-controlled crystal growth regime. The calculated results are evaluated experimentally.
Resumo:
A rigorous unit operation model is developed for vapor membrane separation. The new model is able to describe temperature, pressure, and concentration dependent permeation as wellreal fluid effects in vapor and gas separation with hydrocarbon selective rubbery polymeric membranes. The permeation through the membrane is described by a separate treatment of sorption and diffusion within the membrane. The chemical engineering thermodynamics is used to describe the equilibrium sorption of vapors and gases in rubbery membranes with equation of state models for polymeric systems. Also a new modification of the UNIFAC model is proposed for this purpose. Various thermodynamic models are extensively compared in order to verify the models' ability to predict and correlate experimental vapor-liquid equilibrium data. The penetrant transport through the selective layer of the membrane is described with the generalized Maxwell-Stefan equations, which are able to account for thebulk flux contribution as well as the diffusive coupling effect. A method is described to compute and correlate binary penetrant¿membrane diffusion coefficients from the experimental permeability coefficients at different temperatures and pressures. A fluid flow model for spiral-wound modules is derived from the conservation equation of mass, momentum, and energy. The conservation equations are presented in a discretized form by using the control volume approach. A combination of the permeation model and the fluid flow model yields the desired rigorous model for vapor membrane separation. The model is implemented into an inhouse process simulator and so vapor membrane separation may be evaluated as an integralpart of a process flowsheet.
Resumo:
This thesis gathers knowledge about ongoing high-temperature reactor projects around the world. Methods for calculating coolant flow and heat transfer inside a pebble-bed reactor core are also developed. The thesis begins with the introduction of high-temperature reactors including the current state of the technology. Process heat applications that could use the heat from a high-temperature reactor are also introduced. A suitable reactor design with data available in literature is selected for the calculation part of the thesis. Commercial computational fluid dynamics software Fluent is used for the calculations. The pebble-bed is approximated as a packed-bed, which causes sink terms to the momentum equations of the gas flowing through it. A position dependent value is used for the packing fraction. Two different models are used to calculate heat transfer. First a local thermal equilibrium is assumed between the gas and solid phases and a single energy equation is used. In the second approach, separate energy equations are used for the phases. Information about steady state flow behavior, pressure loss, and temperature distribution in the core is obtained as results of the calculations. The effect of inlet mass flow rate to pressure loss is also investigated. Data found in literature and the results correspond each other quite well, considered the amount of simplifications in the calculations. The models developed in this thesis can be used to solve coolant flow and heat transfer in a pebble-bed reactor, although additional development and model validation is needed for better accuracy and reliability.
Resumo:
This dissertation is based on four articles dealing with modeling of ozonation. The literature part of this considers some models for hydrodynamics in bubble column simulation. A literature review of methods for obtaining mass transfer coefficients is presented. The methods presented to obtain mass transfer are general models and can be applied to any gas-liquid system. Ozonation reaction models and methods for obtaining stoichiometric coefficients and reaction rate coefficients for ozonation reactions are discussed in the final section of the literature part. In the first article, ozone gas-liquid mass transfer into water in a bubble column was investigated for different pH values. A more general method for estimation of mass transfer and Henry’s coefficient was developed from the Beltrán method. The ozone volumetric mass transfer coefficient and the Henry’s coefficient were determined simultaneously by parameter estimation using a nonlinear optimization method. A minor dependence of the Henry’s law constant on pH was detected at the pH range 4 - 9. In the second article, a new method using the axial dispersion model for estimation of ozone self-decomposition kinetics in a semi-batch bubble column reactor was developed. The reaction rate coefficients for literature equations of ozone decomposition and the gas phase dispersion coefficient were estimated and compared with the literature data. The reaction order in the pH range 7-10 with respect to ozone 1.12 and 0.51 the hydroxyl ion were obtained, which is in good agreement with literature. The model parameters were determined by parameter estimation using a nonlinear optimization method. Sensitivity analysis was conducted using object function method to obtain information about the reliability and identifiability of the estimated parameters. In the third article, the reaction rate coefficients and the stoichiometric coefficients in the reaction of ozone with the model component p-nitrophenol were estimated at low pH of water using nonlinear optimization. A novel method for estimation of multireaction model parameters in ozonation was developed. In this method the concentration of unknown intermediate compounds is presented as a residual COD (chemical oxygen demand) calculated from the measured COD and the theoretical COD for the known species. The decomposition rate of p-nitrophenol on the pathway producing hydroquinone was found to be about two times faster than the p-nitrophenol decomposition rate on the pathway producing 4- nitrocatechol. In the fourth article, the reaction kinetics of p-nitrophenol ozonation was studied in a bubble column at pH 2. Using the new reaction kinetic model presented in the previous article, the reaction kinetic parameters, rate coefficients, and stoichiometric coefficients as well as the mass transfer coefficient were estimated with nonlinear estimation. The decomposition rate of pnitrophenol was found to be equal both on the pathway producing hydroquinone and on the path way producing 4-nitrocathecol. Comparison of the rate coefficients with the case at initial pH 5 indicates that the p-nitrophenol degradation producing 4- nitrocathecol is more selective towards molecular ozone than the reaction producing hydroquinone. The identifiability and reliability of the estimated parameters were analyzed with the Marcov chain Monte Carlo (MCMC) method. @All rights reserved. No part of the publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the author.
Sustainability of palm oil production and opportunities for Finnish technology and know-how transfer
Resumo:
The global demand for palm oil is growing, thus prompting an increase in the global production particularly in Malaysia and Indonesia. Such increasing demand for palm oil is due to palm oil’s relatively cheap price and versatile advantage both in edible and non-edible applications. Along with the increasing demand for palm oil, particularly for the production of biofuel, is a heated debate on its sustainability. Ecological degradation, climate change and social issues are among the main sustainability issues pressing the whole palm oil industry today. Clean Development Mechanism (CDM) projects fulfilling the imperatives of the Kyoto Protocol are starting to gain momentum in Malaysia as reflected by the increasing registration of CDM projects in the palm oil mills. Most CDM projects in palm oil mills are on waste-to-energy, cocomposting, and methane recovery with the latter being the most common. The study on greenhouse gases (GHG) in the milling process points that biogas collection and energy utilisation has the greatest positive effect on GHG balance. On the other hand, empty fruit bunches (EFB) end-use as energy and high energy efficiency of the mill have the least effect on GHG balance of the mill. The range of direct GHG emissions from the palm oil mill is from 2.5 to 27 gCO2e/MJCPO, while the range of GHG emissions with all indirect and avoided emissions included is from -9 to 29 gCO2e/MJCPO. Comparing this GHG balance result with that of the EU RES-Directive suggests a further check on the values and emissions consideration of the latter.
Resumo:
The behavioural finance literature expects systematic and significant deviations from efficiency to persist in securities markets due to behavioural and cognitive biases of investors. These behavioural models attempt to explain the coexistence of intermediate-term momentum and long-term reversals in stock returns based on the systematic violations of rational behaviour of investors. The study investigates the anchoring bias of investors and the profitability of the 52-week momentum strategy (GH henceforward). The relatively highly volatile OMX Helsinki stock exchange is a suitable market for examining the momentum effect, since international investors tend to realise their positions first from the furthest security markets by the time of market turbulence. Empirical data is collected from Thomson Reuters Datastream and the OMX Nordic website. The objective of the study is to provide a throughout research by formulating a self-financing GH momentum portfolio. First, the seasonality of the strategy is examined by taking the January effect into account and researching abnormal returns in long-term. The results indicate that the GH strategy is subject to significantly negative revenues in January, but the strategy is not prone to reversals in long-term. Then the predictive proxies of momentum returns are investigated in terms of acquisition prices and 52-week high statistics as anchors. The results show that the acquisition prices do not have explanatory power over the GH strategy’s abnormal returns. Finally, the efficacy of the GH strategy is examined after taking transaction costs into account, finding that the robust abnormal returns remain statistically significant despite the transaction costs. As a conclusion, the relative distance between a stock’s current price and its 52-week high statistic explains the profits of momentum investing to a high degree. The results indicate that intermediateterm momentum and long-term reversals are separate phenomena. This presents a challenge to current behavioural theories, which model these aspects of stock returns as subsequent components of how securities markets respond to relevant information.
Resumo:
This study examines how MPEG-2 Transport Stream, used in DVB-T video transmission, can be reliably and efficiently transferred to remote locations over an MPLS network. All the relevant technologies used in this scenario are also discussed in the study. This study was done for Digita Oy, which is a major radio and television content distributor in Finland. The theoretical part of the study begins with the introduction to MPLS technology and continues with explanation of IP Multicast and its components. The fourth section discusses MPEG-2 and the formation and content of MPEG-2 Transport Stream. These technologies were studied in relevant literature and RFC documentation. After the theoretical part of the study, the test setup and the test cases are presented. The results of the test cases, and the conclusions that can be drawn based on them, are discussed in the last section of the study. The tests showed that it is possible to transfer digital video quite reliably over an MPLS network using IP Multicast. By configuring the equipment correctly, the recovery time of the network in case of a failure can be shortened remarkably. Also, the unwanted effect of other traffic on the critical video traffic can be eliminated by defining the Quality of Service parameters correctly. There are, however, some issues that need to be tested further before this setup can be used in broadcast networks. Reliable operation of IP Multicast and proper error correction are the main subjects for future testing.
Resumo:
Selostus: Hevosen alkioiden värjääminen DAPI:lla ennen vastaanottajaan siirtoa
Resumo:
Selostus: Radiocesiumin kulkeutuminen eri laidunekosysteemien maa-ruoho-lammas -ravintoketjussa
Resumo:
Selostus: Vasikoiden tuottaminen tuoreilla ja kylmäsäilytetyillä halkaistuilla alkioilla
Resumo:
Selostus: Alkionsiirtojalostusohjelma "ASMO", sen tavoitteet ja yhteenveto alkuvalinnan tuloksista
Resumo:
Selostus: [sup 134]Cs-aktiivisuuspitoisuuden vähentäminen ferriheksasyanoferraatin avulla