12 resultados para INTERGRAIN MAGNETORESISTANCE
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
This work is dedicated to investigation of the energy spectrum of one of the most anisotropic narrow-gap semiconductors, CdSb. At the beginning of the present studies even the model of its energy band structure was not clear. Measurements of galvanomagnetic effects in wide temperature range (1.6 - 300 K) and in magnetic fields up to 30 T were chosen for clarifying of the energy spectrum in the intentionally undoped CdSb single crystals and doped with shallow impurities (In, Ag). Detection of the Shubnikov - de Haas oscillations allowed estimating the fundamental energy spectrum parameters. The shapes of the Fermi surfaces of electrons (sphere) and holes (ellipsoid), the number of the equivalent extremums for valence band (2) and their positions in the Brillouin zone were determined for the first time in this work. Also anisotropy coefficients, components of the tensor of effective masses of carriers, effective masses of density of states, nonparabolicity of the conduction and valence bands, g-factor and its anisotropy for n- and p-CdSb were estimated for the first time during these studies. All the results obtained are compared with the cyclotron resonance data and the corresponding theoretical calculations for p-CdSb. This is basic information for the analyses of the complex transport properties of CdSb and for working out the energy spectrum model of the shallow energy levels of defects and impurities in this semiconductor. It was found out existence of different mechanisms of hopping conductivity in the presence of metal - insulator transition induced by magnetic field in n- and p-CdSb. Quite unusual feature opened in CdSb is that different types of hopping conductivity may take place in the same crystal depending on temperature, magnetic field or even orientation of crystal in magnetic field. Transport properties of undoped p-CdSb samples show that the anisotropy of the resistivity in weak and strong magnetic fields is determined completely by the anisotropy of the effective mass of the holes. Temperature and magnetic field dependence of the Hall coefficient and magnetoresistance is attributed to presence of two groups of holes with different concentrations and mobilities. The analysis demonstrates that below Tcr ~ 20 K and down to ~ 6 - 7 K the low-mobile carriers are itinerant holes with energy E2 ≈ 6 meV. The high-mobile carriers, at all temperatures T < Tcr, are holes activated thermally from a deeper acceptor band to itinerant states of a shallower acceptor band with energy E1 ≈ 3 meV. Analysis of temperature dependences of mobilities confirms the existence of the heavy-hole band or a non-equivalent maximum and two equivalent maxima of the light-hole valence band. Galvanomagnetic effects in n-CdSb reveal the existence of two groups of carriers. These are the electrons of a single minimum in isotropic conduction band and the itinerant electrons of the narrow impurity band, having at low temperatures the energies above the bottom of the conduction band. It is found that above this impurity band exists second impurity band of only localized states and the energy of both impurity bands depend on temperature so that they sink into the band gap when temperature is increased. The bands are splitted by the spin, and in strong magnetic fields the energy difference between them decreases and redistribution of the electrons between the two impurity bands takes place. Mobility of the conduction band carriers demonstrates that scattering in n-CdSb at low temperatures is strongly anisotropic. This is because of domination from scattering on the neutral impurity centers and increasing of the contribution to mobility from scattering by acoustic phonons when temperature increases. Metallic conductivity in zero or weak magnetic field is changed to activated conductivity with increasing of magnetic field. This exhibits a metal-insulator transition (MIT) induced by the magnetic field due to shift of the Fermi level from the interval of extended states to that of the localized states of the electron spectrum near the edge of the conduction band. The Mott variablerange hopping conductivity is observed in the low- and high-field intervals on the insulating side of the MIT. The results yield information about the density of states, the localization radius of the resonant impurity band with completely localized states and about the donor band. In high magnetic fields this band is separated from the conduction band and lies below the resonant impurity bands.
Resumo:
In the present work are reported investigations of structural, magnetic and electronic properties of GaAs/Ga1-xInxAs/GaAs quantum wells (QW) having a 0.5 - 1.8 monolayer thick Mn layer, separated from the quantum well by a 3 nm thick spacer. The structure of the samples is analyzed in details by photoluminescence and high-resolution X-ray difractometry and reflectometry, confirming that Mn atoms are practically absent from the QW. Transport properties and crystal structure are analyzed for the first time for this type of QW structures with so high mobility. Observedconductivity and the Hall effect in quantizing magnetic fields in wide temperature range, defined by transport of holes in the quantum well, demonstrate properties inherent to ferromagnetic systems with spin polarization of charge carriersin the QW. Investigation of the Shubnikov ¿ de Haas and the Hall effects gave the possibility to estimate the energy band parameters such as cyclotron mass andFermi level and calculate concentrations and mobilities of holes and show the high-quality of structures. Magnetic ordering is confirmed by the existence of the anomalous Hall effect.
Resumo:
In the present work structural, magnetic and transport properties of InGaAs quantum wells (QW) prepared by MBE with an remote Mn layer are investigated. By means of high-resolution X-ray diffractometry the structure of the samples is analyzed. It is shown that Mn ions penetrate into the QW. Influence of the thickness of GaAs spacer and annealing at 286 ºС on the properties of the system is shown. It is shown that annealing of the samples led to Mn activation and narrowing of the Mn layer. Substantial role of 2D holes in ferromagnetic ordering in Mn layer is shown. Evidence for that is observation of maximum at 25 – 55 K on the resistivity temperature dependence. Position of maximum, which is used for quantitative assessment of the Curie temperature, correlates with calculations of the Curie temperature for structures with indirect interaction via 2D holes’ channel. Dependence of the Curie temperature on the spacer thickness shows, that creation of applicable spintronic devices needs high-precision equipment to manufacture extra fine structures. The magnetotransport measurements show that charge carrier mobility is very low. This leads to deficiency of the anomalous Hall effect. At the same time, magnetic field dependences of the magnetization at different temperatures demonstrate that systems are ferromagnetically ordered. These facts, most probably, give evidence of presence of the ferromagnetic MnAs clusters.
Resumo:
In this work temperature dependences of resistivity in zero field have been obtained for epitaxially grown Ga1_xMnxAs thin films with 6 % and 8 % Mn content in 50 300 K temperature range. Decrease of resistivity has been observed. Negative magnetoresistance has been explained by empirical spin dependent hopping model. Hall effect has been studied and anomalous Hall effect, inherent to ferromagnetic materials, has been observed. Both normal and anomalous Hall coefficients have been calculated from experimental data, as well as hole densities. Activation energy of impurity level has been estimated.
Resumo:
This thesis is devoted to investigations of three typical representatives of the II-V diluted magnetic semiconductors, Zn1-xMnxAs2, (Zn1-xMnx)3As2 and p-CdSb:Ni. When this work started the family of the II-V semiconductors was presented by only the compounds belonging to the subgroup II3-V2, as (Zn1-xMnx)3As2, whereas the rest of the materials mentioned above were not investigated at all. Pronounced low-field magnetic irreversibility, accompanied with a ferromagnetic transition, are observed in Zn1-xMnxAs2 and (Zn1-xMnx)3As2 near 300 K. These features give evidence for presence of MnAs nanosize magnetic clusters, responsible for frustrated ground magnetic state. In addition, (Zn1-xMnx)3As2 demonstrates large paramagnetic response due to considerable amount of single Mn ions and small antiferromagnetic clusters. Similar paramagnetic system existing in Zn1-xMnxAs2 is much weaker. Distinct low-field magnetic irreversibility, accompanied with a rapid saturation of the magnetization with increasing magnetic field, is observed near the room temperature in p- CdSb:Ni, as well. Such behavior is connected to the frustrated magnetic state, determined by Ni-rich magnetic Ni1-xSbx nanoclusters. Their large non-sphericity and preferable orientations are responsible for strong anisotropy of the coercivity and saturation magnetization of p- CdSb:Ni. Parameters of the Ni1-xSbx nanoclusters are estimated. Low-temperature resistivity of p-CdSb:Ni is governed by a hopping mechanism of charge transfer. The variable-range hopping conductivity, observed in zero magnetic field, demonstrates a tendency of transformation into the nearest-neighbor hopping conductivity in non-zero magnetic filed. The Hall effect in p-CdSb:Ni exhibits presence of a positive normal and a negative anomalous contributions to the Hall resistivity. The normal Hall coefficient is governed mainly by holes activated into the valence band, whereas the anomalous Hall effect, attributable to the Ni1-xSbx nanoclusters with ferromagnetically ordered internal spins, exhibits a low-temperature power-law resistivity scaling.
Resumo:
In the present work the aim was to prepare an automatic installation for studies of galvanomagnetic effects in solids and to test it by calibration measurements. As a result required automatic installation was created in this work and test measurements were performed. Created setup automatically provides measurements of the magnetoresistance of the Hall effect with an accuracy of ± 2 µV in the temperature range 2 – 300 K and steady magnetic fields up to 6 T. The test measurements of the glassy carbon samples showed that the setup is reliable, has high sensitivity and is easy to use. The results obtained in the research process are pioneer and will be separately analyzed.
Resumo:
Main aim of this work was preparation of a computer program for investigation of galvanomagnetic effects in solid state materials. These effects were investigated in magnetic field up to 6 T at temperatures 4.6 and 80.5 K. Two CdSb samples with Ni shallow impurities (concentration of impurity was 5% by mass) and one undoped CdSb single crystal were studied. Obtained results were compared with previous experimental results for these samples, and showed their identity.
Resumo:
Interest to hole-doped mixed-valence manganite perovskites is connected to the ‘colossal’ magnetoresistance. This effect or huge drop of the resistivity, ρ, in external magnetic field, B, attains usually the maximum value near the ferromagnetic Curie temperature, TC. In this thesis are investigated conductivity mechanisms and magnetic properties of the manganite perovskite compounds LaMnO3+, La1-xCaxMnO3, La1-xCaxMn1-yFeyO3 and La1- xSrxMn1-yFeyO3. When the present work was started the key role of the phase separation and its influence on the properties of the colossal magnetoresistive materials were not clear. Our main results are based on temperature dependencies of the magnetoresistance and magnetothermopower, investigated in the temperature interval of 4.2 - 300 K in magnetic fields up to 10 T. The magnetization was studied in the same temperature range in weak (up to 0.1 T) magnetic fields. LaMnO3+δ is the parent compound for preparation of the hole-doped CMR materials. The dependences of such parameters as the Curie temperature, TC, the Coulomb gap, Δ, the rigid gap, γ, and the localization radius, a, on pressure, p, are observed in LaMnO3+δ. It has been established that the dependences above can be interpreted by increase of the electron bandwidth and decrease of the polaron potential well when p is increased. Generally, pressure stimulates delocalization of the electrons in LaMnO3+δ. Doping of LaMnO3 with Ca, leading to La1-xCaxMnO3, changes the Mn3+/Mn4+ ratio significantly and brings an additional disorder to the crystal lattice. Phase separation in a form of mixture of the ferromagnetic and the spin glass phases was observed and investigated in La1- xCaxMnO3 at x between 0 and 0.4. Influence of the replacement of Mn by Fe is studied in La0.7Ca0.3Mn1−yFeyO3 and La0.7Sr0.3Mn1−yFeyO3. Asymmetry of the soft Coulomb gap and of the rigid gap in the density of localized states, small shift of the centre of the gaps with respect to the Fermi level and cubic asymmetry of the density of states are obtained in La0.7Ca0.3Mn1−yFeyO3. Damping of TC with y is connected to breaking of the double-exchange interaction by doping with Fe, whereas the irreversibility and the critical behavior of the magnetic susceptibility are determined by the phase separation and the frustrated magnetic state of La0.7Sr0.3Mn1−yFeyO3.
Resumo:
Magnetic nanoparticles are very important in modern industry. These particles are used in many different spheres of life. Nanoparticles have unusual physical and chemical properties connected both with quantum dimensional effects and with the increased role of the surface atoms. Most clearly the difference between the properties of bulk materials and nanoparticles can be seen in the magnetic properties of these materials. The most typical magnetic properties of nanomaterials are superparamagnetism with the size of the cluster from 1 to 10 nm; single-domain magnetic state of nanoclusters and nanostructures up to 20 nm; magnetization processes connected with magnetic cluster ordering and with its forms and sizes; quantum magnetic tunneling effects when magnetization changes by jumps and giant magnetoresistance effects. For research of the magnetic properties of iron-containing nanostructures, it is convenient to apply Mӧssbauer spectroscopy. In this work a number of nano-sized samples of iron oxides were examined by Mössbauer spectroscopy. The Mössbauer spectra of nanoparticles with various sizes were obtained. Mössbauer spectra of iron oxide nanoparticles were compared with the spectra of bulk samples. It was shown how the spectra of iron oxide nanoparticles change depending on the particle sizes.
Resumo:
This thesis is devoted to growth and investigations of Mn-doped InSb and II-IV-As2 semiconductors, including Cd1-xZnxGeAs2:Mn, ZnSiAs2:Mn bulk crystals, ZnSiAs2:Mn/Si heterostructures. Bulk crystals were grown by direct melting of starting components followed by fast cooling. Mn-doped ZnSiAs2/Si heterostructures were grown by vacuum-thermal deposition of ZnAs2 and Mn layers on Si substrates followed by annealing. The compositional and structural properties of samples were investigated by different methods. The samples consist of micro- and nano- sizes clusters of an additional ferromagnetic Mn-X phases (X = Sb or As). Influence of magnetic precipitations on magnetic and electrical properties of the investigated materials was examined. With relatively high Mn concentration the main contribution to magnetization of samples is by MnSb or MnAs clusters. These clusters are responsible for high temperature behavior of magnetization and relatively high Curie temperature: up to 350 K for Mn-doped II-IV-As2 and about 600 K for InMnSb. The low-field magnetic properties of Mn-doped II-IV-As2 semiconductors and ZnSiAs2:Mn/Si heterostructures are connected to the nanosize MnAs particles. Also influence of nanosized MnSb clusters on low-field magnetic properties of InMnSb have been observed. The contribution of paramagnetic phase to magnetization rises at low temperatures or in samples with low Mn concentration. Source of this contribution is not only isolated Mn ions, but also small complexes, mainly dimmers and trimmers formed by Mn ions, substituting cation positions in crystal lattice. Resistivity, magnetoresistance and Hall resistivity properties in bulk Mn-doped II-IV-As2 and InSb crystals was analyzed. The interaction between delocalized holes and 3d shells of the Mn ions together with giant Zeeman splitting near the cluster interface are respond for negative magnetoresistance. Additionally to high temperature critical pointthe low-temperature ferromagnetic transition was observed Anomalous Hall effect was observed in Mn doped samples and analyzed for InMnSb. It was found that MnX clusters influence significantly on magnetic scattering of carriers.
Resumo:
Transport properties of GaAs / δ – Mn / GaAs / InxGa1-xAs / GaAs structure with Mn δ – layer, which is separated from InxGa1-xAs quantum well (QW) by 3 nm thick GaAs spacer was investigated. This structure with high mobility was characterized by X-ray difractometry and reflectometry. Transport and electrical properties of the structure were measured by using Pulsed Magnetic Field System (PMFS). During investigation of the Shubnikov – de Haas and the Hall effects the main parameters of QW structure such as cyclotron mass, Fermi level, g – factor, Dingle temperature and concentration of holes were estimated. Obtained results show high quality of the prepared structure. However, anomalous Hall effect at temperatures 2.09 K, 3 K, 4.2 K is not clearly observed. Attempts to identify magnetic moment were made. For this purpose the polarity of the filed was changed to the opposite at each shot. As a result hysteresis loop was not observed in the magnetic field dependences of the anomalous Hall resistivity.This can be attributed to the imperfection of the experimental setup.
Resumo:
Investigation of galvanomagnetic effects in nanostructure GaAs/Mn/GaAs/In0.15Ga0.85As/ GaAs is presented. This nanostructure is classified as diluted magnetic semiconductor (DMS). Temperature dependence of transverse magnetoresistivity of the sample was studied. The anomalous Hall effect was detected and subtracted from the total Hall component. Special attention was paid to the measurements of Shubnikov-de Haas oscillations, which exists only in the case of magnetic field aligned perpendicularly to the plane of the sample. This confirms two-dimensional character of the hole energy spectrum in the quantum well. Such important characteristics as cyclotron mass, the Fermi energy and the Dingle temperature were calculated, using experimental data of Shubnikov-de Haas oscillations. The hole concentration and hole mobility in the quantum well also were estimated for the sample. At 4.2 K spin splitting of the maxima of transverse resistivity was observed and g-factor was calculated for that case. The values of the Dingle temperatures were obtained by two different approaches. From the comparison of these values it was concluded that the broadening of Landau levels in the investigated structure is mainly defined by the scattering of charge carriers on the defects of the crystal lattice