2 resultados para INDUCTION GENERATOR
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
In distributed energy production, permanent magnet synchronous generators (PMSG) are often connected to the grid via frequency converters, such as voltage source line converters. The price of the converter may constitute a large part of the costs of a generating set. Some of the permanent magnet synchronous generators with converters and traditional separately excited synchronous generators couldbe replaced by direct-on-line (DOL) non-controlled PMSGs. Small directly networkconnected generators are likely to have large markets in the area of distributed electric energy generation. Typical prime movers could be windmills, watermills and internal combustion engines. DOL PMSGs could also be applied in island networks, such as ships and oil platforms. Also various back-up power generating systems could be carried out with DOL PMSGs. The benefits would be a lower priceof the generating set and the robustness and easy use of the system. The performance of DOL PMSGs is analyzed. The electricity distribution companies have regulations that constrain the design of the generators being connected to the grid. The general guidelines and recommendations are applied in the analysis. By analyzing the results produced by the simulation model for the permanent magnet machine, the guidelines for efficient damper winding parameters for DOL PMSGs are presented. The simulation model is used to simulate grid connections and load transients. The damper winding parameters are calculated by the finite element method (FEM) and determined from experimental measurements. Three-dimensional finite element analysis (3D FEA) is carried out. The results from the simulation model and 3D FEA are compared with practical measurements from two prototype axial flux permanent magnet generators provided with damper windings. The dimensioning of the damper winding parameters is case specific. The damper winding should be dimensioned based on the moment of inertia of the generating set. It is shown that the damper winding has optimal values to reach synchronous operation in the shortest period of time after transient operation. With optimal dimensioning, interferenceon the grid is minimized.
Resumo:
Within the latest decade high-speed motor technology has been increasingly commonly applied within the range of medium and large power. More particularly, applications like such involved with gas movement and compression seem to be the most important area in which high-speed machines are used. In manufacturing the induction motor rotor core of one single piece of steel it is possible to achieve an extremely rigid rotor construction for the high-speed motor. In a mechanical sense, the solid rotor may be the best possible rotor construction. Unfortunately, the electromagnetic properties of a solid rotor are poorer than the properties of the traditional laminated rotor of an induction motor. This thesis analyses methods for improving the electromagnetic properties of a solid-rotor induction machine. The slip of the solid rotor is reduced notably if the solid rotor is axially slitted. The slitting patterns of the solid rotor are examined. It is shown how the slitting parameters affect the produced torque. Methods for decreasing the harmonic eddy currents on the surface of the rotor are also examined. The motivation for this is to improve the efficiency of the motor to reach the efficiency standard of a laminated rotor induction motor. To carry out these research tasks the finite element analysis is used. An analytical calculation of solid rotors based on the multi-layer transfer-matrix method is developed especially for the calculation of axially slitted solid rotors equipped with wellconducting end rings. The calculation results are verified by using the finite element analysis and laboratory measurements. The prototype motors of 250 – 300 kW and 140 Hz were tested to verify the results. Utilization factor data are given for several other prototypes the largest of which delivers 1000 kW at 12000 min-1.