2 resultados para INDUCED METASTABLE STATES
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
This work is dedicated to investigation of the energy spectrum of one of the most anisotropic narrow-gap semiconductors, CdSb. At the beginning of the present studies even the model of its energy band structure was not clear. Measurements of galvanomagnetic effects in wide temperature range (1.6 - 300 K) and in magnetic fields up to 30 T were chosen for clarifying of the energy spectrum in the intentionally undoped CdSb single crystals and doped with shallow impurities (In, Ag). Detection of the Shubnikov - de Haas oscillations allowed estimating the fundamental energy spectrum parameters. The shapes of the Fermi surfaces of electrons (sphere) and holes (ellipsoid), the number of the equivalent extremums for valence band (2) and their positions in the Brillouin zone were determined for the first time in this work. Also anisotropy coefficients, components of the tensor of effective masses of carriers, effective masses of density of states, nonparabolicity of the conduction and valence bands, g-factor and its anisotropy for n- and p-CdSb were estimated for the first time during these studies. All the results obtained are compared with the cyclotron resonance data and the corresponding theoretical calculations for p-CdSb. This is basic information for the analyses of the complex transport properties of CdSb and for working out the energy spectrum model of the shallow energy levels of defects and impurities in this semiconductor. It was found out existence of different mechanisms of hopping conductivity in the presence of metal - insulator transition induced by magnetic field in n- and p-CdSb. Quite unusual feature opened in CdSb is that different types of hopping conductivity may take place in the same crystal depending on temperature, magnetic field or even orientation of crystal in magnetic field. Transport properties of undoped p-CdSb samples show that the anisotropy of the resistivity in weak and strong magnetic fields is determined completely by the anisotropy of the effective mass of the holes. Temperature and magnetic field dependence of the Hall coefficient and magnetoresistance is attributed to presence of two groups of holes with different concentrations and mobilities. The analysis demonstrates that below Tcr ~ 20 K and down to ~ 6 - 7 K the low-mobile carriers are itinerant holes with energy E2 ≈ 6 meV. The high-mobile carriers, at all temperatures T < Tcr, are holes activated thermally from a deeper acceptor band to itinerant states of a shallower acceptor band with energy E1 ≈ 3 meV. Analysis of temperature dependences of mobilities confirms the existence of the heavy-hole band or a non-equivalent maximum and two equivalent maxima of the light-hole valence band. Galvanomagnetic effects in n-CdSb reveal the existence of two groups of carriers. These are the electrons of a single minimum in isotropic conduction band and the itinerant electrons of the narrow impurity band, having at low temperatures the energies above the bottom of the conduction band. It is found that above this impurity band exists second impurity band of only localized states and the energy of both impurity bands depend on temperature so that they sink into the band gap when temperature is increased. The bands are splitted by the spin, and in strong magnetic fields the energy difference between them decreases and redistribution of the electrons between the two impurity bands takes place. Mobility of the conduction band carriers demonstrates that scattering in n-CdSb at low temperatures is strongly anisotropic. This is because of domination from scattering on the neutral impurity centers and increasing of the contribution to mobility from scattering by acoustic phonons when temperature increases. Metallic conductivity in zero or weak magnetic field is changed to activated conductivity with increasing of magnetic field. This exhibits a metal-insulator transition (MIT) induced by the magnetic field due to shift of the Fermi level from the interval of extended states to that of the localized states of the electron spectrum near the edge of the conduction band. The Mott variablerange hopping conductivity is observed in the low- and high-field intervals on the insulating side of the MIT. The results yield information about the density of states, the localization radius of the resonant impurity band with completely localized states and about the donor band. In high magnetic fields this band is separated from the conduction band and lies below the resonant impurity bands.
Resumo:
The main purpose of the present doctoral thesis is to investigate subjective experiences and cognitive processes in four different types of altered states of consciousness: naturally occurring dreaming, cognitively induced hypnosis, pharmacologically induced sedation, and pathological psychosis. Both empirical and theoretical research is carried out, resulting in four empirical and four theoretical studies. The thesis begins with a review of the main concepts used in consciousness research, the most influential philosophical and neurobiological theories of subjective experience, the classification of altered states of consciousness, and the main empirical methods used to study consciousness alterations. Next, findings of the original studies are discussed, as follows. Phenomenal consciousness is found to be dissociable from responsiveness, as subjective experiences do occur in unresponsive states, including anaesthetic-induced sedation and natural sleep, as demonstrated by post-awakening subjective reports. Two new tools for the content analysis of subjective experiences and dreams are presented, focusing on the diversity, complexity and dynamics of phenomenal consciousness. In addition, a new experimental paradigm of serial awakenings from non-rapid eye movement sleep is introduced, which enables more rapid sampling of dream reports than has been available in previous studies. It is also suggested that lucid dreaming can be studied using transcranial brain stimulation techniques and systematic analysis of pre-lucid dreaming. For blind judges, dreams of psychotic patients appear to be indistinguishable from waking mentation reports collected from the same patients, which indicates a close resemblance of these states of mind. However, despite phenomenological similarities, dreaming should not be treated as a uniform research model of psychotic or intact consciousness. Contrary to this, there seems to be a multiplicity of routes of how different states of consciousness can be associated. For instance, seemingly identical time perception distortions in different alterations of consciousness may have diverse underlying causes for these distortions. It is also shown that altered states do not necessarily exhibit impaired cognitive processing compared to a baseline waking state of consciousness: a case study of time perception in a hypnotic virtuoso indicates a more consistent perceptual timing under hypnosis than in a waking state. The thesis ends with a brief discussion of the most promising new perspectives for the study of alterations of consciousness.