2 resultados para IN-VITRO INHIBITION

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Probiotic lactobacilli and bifidobacteria in the mouth – in vitro studies on saliva-mediated functions and acid production Probiotics are viable bacteria which, when used in adequate amounts, are beneficial to the health of the host. Although most often related to intestinal health, probiotic bacteria can be found also in the mouth after consumption of products that contain them. This study aimed at evaluating the oral effects of probiotic bacteria already in commercial use. In a series of in vitro studies, the oral colonisation potential of different probiotic bacteria, their acid production and potential saliva-mediated effects on oral microbial ecology were investigated. The latter included effects on the salivary pellicle, the adhesion of other bacteria, and the activation of the peroxidase system. Streptococcus mutans, Streptococcus gordonii, Aggregatibacter actinomycetemcomitans and Helicobacter pylori were used as bacterial indicators of the studied phenomena. There were significant differences between the probiotic strains in their colonisation potential. They all were acidogenic, although using different sugars and sugar alcohols. However, their acid production could be inhibited by the peroxidase system. Based on the results, it can be suggested that probiotic bacteria might influence the oral microbiota by different, partly species or strain-specific means. These include the inhibition of bacterial adhesion, modification of the enamel pellicle, antimicrobial activity, and activation of the peroxidase system. To conclude, probiotic strains differed from each other in their colonisation potential and other oral effects as evaluated in vitro. Both positive and potentially harmful effects were observed, but the significance of the perceived results needs to be further evaluated in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drug discovery is a continuous process where researchers are constantly trying to find new and better drugs for the treatment of various conditions. Alzheimer’s disease, a neurodegenerative disease mostly affecting the elderly, has a complex etiology with several possible drug targets. Some of these targets have been known for years while other new targets and theories have emerged more recently. Cholinesterase inhibitors are the major class of drugs currently used for the symptomatic treatment of Alzheimer’s disease. In the Alzheimer’s disease brain there is a deficit of acetylcholine and an impairment in signal transmission. Acetylcholinesterase has therefore been the main target as this is the main enzyme hydrolysing acetylcholine and ending neurotransmission. It is believed that by inhibiting acetylcholinesterase the cholinergic signalling can be enhanced and the cognitive symptoms that arise in Alzheimer’s disease can be improved. Butyrylcholinesterase, the second enzyme of the cholinesterase family, has more recently attracted interest among researchers. Its function is still not fully known, but it is believed to play a role in several diseases, one of them being Alzheimer’s disease. In this contribution the aim has primarily been to identify butyrylcholinesterase inhibitors to be used as drug molecules or molecular probes in the future. Both synthetic and natural compounds in diverse and targeted screening libraries have been used for this purpose. The active compounds have been further characterized regarding their potencies, cytotoxicity, and furthermore, in two of the publications, the inhibitors ability to also inhibit Aβ aggregation in an attempt to discover bifunctional compounds. Further, in silico methods were used to evaluate the binding position of the active compounds with the enzyme targets. Mostly to differentiate between the selectivity towards acetylcholinesterase and butyrylcholinesterase, but also to assess the structural features required for enzyme inhibition. We also evaluated the compounds, active and non-active, in chemical space using the web-based tool ChemGPS-NP to try and determine the relevant chemical space occupied by cholinesterase inhibitors. In this study, we have succeeded in finding potent butyrylcholinesterase inhibitors with a diverse set of structures, nine chemical classes in total. In addition, some of the compounds are bifunctional as they also inhibit Aβ aggregation. The data gathered from all publications regarding the chemical space occupied by butyrylcholinesterase inhibitors we believe will give an insight into the chemically active space occupied by this type of inhibitors and will hopefully facilitate future screening and result in an even deeper knowledge of butyrylcholinesterase inhibitors.