51 resultados para Hyperspectral image

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Technological progress has made a huge amount of data available at increasing spatial and spectral resolutions. Therefore, the compression of hyperspectral data is an area of active research. In somefields, the original quality of a hyperspectral image cannot be compromised andin these cases, lossless compression is mandatory. The main goal of this thesisis to provide improved methods for the lossless compression of hyperspectral images. Both prediction- and transform-based methods are studied. Two kinds of prediction based methods are being studied. In the first method the spectra of a hyperspectral image are first clustered and and an optimized linear predictor is calculated for each cluster. In the second prediction method linear prediction coefficients are not fixed but are recalculated for each pixel. A parallel implementation of the above-mentioned linear prediction method is also presented. Also,two transform-based methods are being presented. Vector Quantization (VQ) was used together with a new coding of the residual image. In addition we have developed a new back end for a compression method utilizing Principal Component Analysis (PCA) and Integer Wavelet Transform (IWT). The performance of the compressionmethods are compared to that of other compression methods. The results show that the proposed linear prediction methods outperform the previous methods. In addition, a novel fast exact nearest-neighbor search method is developed. The search method is used to speed up the Linde-Buzo-Gray (LBG) clustering method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Tasoskannerin ja digitaalisen kuva-analyysimenetelmän kalibrointi juurten morfologian kvantifioimiseksi

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Image filtering is a highly demanded approach of image enhancement in digital imaging systems design. It is widely used in television and camera design technologies to improve the quality of an output image to avoid various problems such as image blurring problem thatgains importance in design of displays of large sizes and design of digital cameras. This thesis proposes a new image filtering method basedon visual characteristics of human eye such as MTF. In contrast to the traditional filtering methods based on human visual characteristics this thesis takes into account the anisotropy of the human eye vision. The proposed method is based on laboratory measurements of the human eye MTF and takes into account degradation of the image by the latter. This method improves an image in the way it will be degraded by human eye MTF to give perception of the original image quality. This thesis gives a basic understanding of an image filtering approach and the concept of MTF and describes an algorithm to perform an image enhancement based on MTF of human eye. Performed experiments have shown quite good results according to human evaluation. Suggestions to improve the algorithm are also given for the future improvements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The topic of this thesis is studying how lesions in retina caused by diabetic retinopathy can be detected from color fundus images by using machine vision methods. Methods for equalizing uneven illumination in fundus images, detecting regions of poor image quality due toinadequate illumination, and recognizing abnormal lesions were developed duringthe work. The developed methods exploit mainly the color information and simpleshape features to detect lesions. In addition, a graphical tool for collecting lesion data was developed. The tool was used by an ophthalmologist who marked lesions in the images to help method development and evaluation. The tool is a general purpose one, and thus it is possible to reuse the tool in similar projects.The developed methods were tested with a separate test set of 128 color fundus images. From test results it was calculated how accurately methods classify abnormal funduses as abnormal (sensitivity) and healthy funduses as normal (specificity). The sensitivity values were 92% for hemorrhages, 73% for red small dots (microaneurysms and small hemorrhages), and 77% for exudates (hard and soft exudates). The specificity values were 75% for hemorrhages, 70% for red small dots, and 50% for exudates. Thus, the developed methods detected hemorrhages accurately and microaneurysms and exudates moderately.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tämän tutkimuksen tavoitteena oli selvittää, vaikuttaako kansainvälisen opiskelijan kulttuuritausta opiskelijan odotetun ja koetun yliopistoimagon muodostumiseen. Jotta kulttuurin vaikutuksia yliopistoimagoon voitiin tutkia, tutkimuksessa tunnistettiin yliopistoimagon muodostumiseen oleellisesti vaikuttavat tekijät. Kulttuurin roolia organisaation imagon muodostumisessa ei ole tutkittu aiemmissa tieteellisissä julkaisuissa. Näin ollen tämän tutkimuksen voidaan katsoa edistäneen nykyistä imagotutkimusta. Tutkimuksen kohdeyliopistona oli Lappeenrannan teknillinen yliopisto (LTY). Tutkimuksen empiirinen osa toteutettiin kvantitatiivisena Internet - pohjaisena kyselytutkimuksena tilastollisen analyysin menetelmin. Otos (N=179) koostui kaikista Lappeenrannan teknillisessä yliopistossa lukuvuonna 2005-2006 opiskelleista kansainvälisistä opiskelijoista. Kyselyyn vastasi 68,7 % opiskelijoista. Johtopäätöksenä voidaan todeta, että kulttuurilla ei ole merkittävää vaikutusta yliopistoimagon muodostumiseen. Tutkimuksessa saatiin selville, että yliopiston Internet-sivujen laatu vaikuttaa positiivisesti odotetun yliopistoimagon muodostumiseen, kun taas koettuun yliopistoimagoon vaikuttavat positiivisesti odotettu yliopistoimago, pedagoginen laatu sekä opetusympäristö. Markkinoinnin näkökulmasta tulokset voidaan vetää yhteen toteamalla, että yliopistojen ei tarvitsisi räätälöidä tutkimuksessa tunnistettuja imagoon vaikuttavia tekijöitä eri kulttuureistatulevia opiskelijoita varten.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multispectral images contain information from several spectral wavelengths and currently multispectral images are widely used in remote sensing and they are becoming more common in the field of computer vision and in industrial applications. Typically, one multispectral image in remote sensing may occupy hundreds of megabytes of disk space and several this kind of images may be received from a single measurement. This study considers the compression of multispectral images. The lossy compression is based on the wavelet transform and we compare the suitability of different waveletfilters for the compression. A method for selecting a wavelet filter for the compression and reconstruction of multispectral images is developed. The performance of the multidimensional wavelet transform based compression is compared to other compression methods like PCA, ICA, SPIHT, and DCT/JPEG. The quality of the compression and reconstruction is measured by quantitative measures like signal-to-noise ratio. In addition, we have developed a qualitative measure, which combines the information from the spatial and spectral dimensions of a multispectral image and which also accounts for the visual quality of the bands from the multispectral images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diplomityössä on käsitelty paperin pinnankarkeuden mittausta, joka on keskeisimpiä ongelmia paperimateriaalien tutkimuksessa. Paperiteollisuudessa käytettävät mittausmenetelmät sisältävät monia haittapuolia kuten esimerkiksi epätarkkuus ja yhteensopimattomuus sileiden papereiden mittauksissa, sekä suuret vaatimukset laboratorio-olosuhteille ja menetelmien hitaus. Työssä on tutkittu optiseen sirontaan perustuvia menetelmiä pinnankarkeuden määrittämisessä. Konenäköä ja kuvan-käsittelytekniikoita tutkittiin karkeilla paperipinnoilla. Tutkimuksessa käytetyt algoritmit on tehty Matlab® ohjelmalle. Saadut tulokset osoittavat mahdollisuuden pinnankarkeuden mittaamiseen kuvauksen avulla. Parhaimman tuloksen perinteisen ja kuvausmenetelmän välillä antoi fraktaaliulottuvuuteen perustuva menetelmä.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis gives an overview of the use of the level set methods in the field of image science. The similar fast marching method is discussed for comparison, also the narrow band and the particle level set methods are introduced. The level set method is a numerical scheme for representing, deforming and recovering structures in an arbitrary dimensions. It approximates and tracks the moving interfaces, dynamic curves and surfaces. The level set method does not define how and why some boundary is advancing the way it is but simply represents and tracks the boundary. The principal idea of the level set method is to represent the N dimensional boundary in the N+l dimensions. This gives the generality to represent even the complex boundaries. The level set methods can be powerful tools to represent dynamic boundaries, but they can require lot of computing power. Specially the basic level set method have considerable computational burden. This burden can be alleviated with more sophisticated versions of the level set algorithm like the narrow band level set method or with the programmable hardware implementation. Also the parallel approach can be used in suitable applications. It is concluded that these methods can be used in a quite broad range of image applications, like computer vision and graphics, scientific visualization and also to solve problems in computational physics. Level set methods and methods derived and inspired by it will be in the front line of image processing also in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tärkeä tehtävä ympäristön tarkkailussa on arvioida ympäristön nykyinen tila ja ihmisen siihen aiheuttamat muutokset sekä analysoida ja etsiä näiden yhtenäiset suhteet. Ympäristön muuttumista voidaan hallita keräämällä ja analysoimalla tietoa. Tässä diplomityössä on tutkittu vesikasvillisuudessa hai vainuja muutoksia käyttäen etäältä hankittua mittausdataa ja kuvan analysointimenetelmiä. Ympäristön tarkkailuun on käytetty Suomen suurimmasta järvestä Saimaasta vuosina 1996 ja 1999 otettuja ilmakuvia. Ensimmäinen kuva-analyysin vaihe on geometrinen korjaus, jonka tarkoituksena on kohdistaa ja suhteuttaa otetut kuvat samaan koordinaattijärjestelmään. Toinen vaihe on kohdistaa vastaavat paikalliset alueet ja tunnistaa kasvillisuuden muuttuminen. Kasvillisuuden tunnistamiseen on käytetty erilaisia lähestymistapoja sisältäen valvottuja ja valvomattomia tunnistustapoja. Tutkimuksessa käytettiin aitoa, kohinoista mittausdataa, minkä perusteella tehdyt kokeet antoivat hyviä tuloksia tutkimuksen onnistumisesta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Main purpose of this thesis is to introduce a new lossless compression algorithm for multispectral images. Proposed algorithm is based on reducing the band ordering problem to the problem of finding a minimum spanning tree in a weighted directed graph, where set of the graph vertices corresponds to multispectral image bands and the arcs’ weights have been computed using a newly invented adaptive linear prediction model. The adaptive prediction model is an extended unification of 2–and 4–neighbour pixel context linear prediction schemes. The algorithm provides individual prediction of each image band using the optimal prediction scheme, defined by the adaptive prediction model and the optimal predicting band suggested by minimum spanning tree. Its efficiency has been compared with respect to the best lossless compression algorithms for multispectral images. Three recently invented algorithms have been considered. Numerical results produced by these algorithms allow concluding that adaptive prediction based algorithm is the best one for lossless compression of multispectral images. Real multispectral data captured from an airplane have been used for the testing.