2 resultados para Human Monocytes
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Monocytes, macrophages and dendritic cells (DCs) are important mediators of innate immune system, whereas T lymphocytes are the effector cells of adaptive immune responses. DCs play a crucial role in bridging innate and adaptive immunity. Naïve CD4+ Th progenitors (Thp) differentiate to functionally distinct effector T cell subsets including Th1, Th2 and Th17 cells, which while being responsible for specific immune functions have also been implicated in pathological responses, such as autoimmunity, asthma and allergy. The main objective of this thesis is to dissect the signalling networks involved in the IL-4 induced differentiation of two important leukocyte subtypes, Th2 cells and DCs. Gene expression profiling lead to identification of over 200 genes which are differentially expressed during cytokine induced differentiation of human monocytes to DCs or macrophages and which are likely to be essential for the proper biological functions of these cell types. Transcriptome analysis demonstrated the dynamic regulation of gene expression by IL-12 and IL-4 during the initiation of Th cell differentiation, which was partly counteracted by an immunosuppressive cytokine, TGFβ, present in the culture media. Results from RNAi mediated gene knockdown experiments and global gene expression analysis elucidated that SATB1 regulates multiple genes important for Th cell polarization or function as well as may compete with GATA3 for the reciprocal regulation of IL-5 transcription. In conclusion, the results obtained have extended our system-level understanding of the immune cell differentiation processes and provide an excellent basis for the further functional studies which could lead to development of improved therapeutic approaches for a range of immunological conditions.
Resumo:
The immune response and immune suppression are equally essential for the immune system to protect the host against an infection and to protect self-molecules in different pathophysiological conditions. Pregnancy is one of the conditions where the maternal immune system remains resistant against microbes and yet attains tolerance to protect the fetus, whose genetic material differs partially from the mother’s. However, if the balance of immune suppression is not precise in the host it can favor conditions which lead to diseases, such as cancer and autoimmune disorders. This study was initiated to investigate the expression and functions of CLEVER-1/Stabilin-1, a multifunctional protein expressed on subsets of endothelial cells and type II macrophages, as an immune suppressive molecule. Firstly, the expression of CLEVER-1/stabilin-1 and its function in human placental macrophages were examined. Secondly, the expression profile and functional significance of stabilin-1 on healthy human monocytes was investigated. The results clarified the expression of CLEVER-1/stabilin-1 on placental macrophages, and verified that CLEVER-1/stabilin-1 functions as an adhesion and scavenging molecule on these cells. The data from normal monocytes revealed that the monocytes with low stabilin-1 expression carried a pro-inflammatory gene signature, and that stabilin-1 can directly or indirectly regulate pro-inflammatory genes in monocytes. Finally, it was shown that monocyte CLEVER-1/stabilin-1 dampens IFN production by T cells. To conclude, CLEVER-1/stabilin-1 is defined as an immune suppressive molecule on monocytes and macrophages. Strikingly, anti-stabilin-1 antibodies may have the potential to promote the Th1 dependent inflammatory response and counteract the tumor induced immune suppression.