10 resultados para Human Genes
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
T helper cell (Th) functions are crucial for proper immune defence against various intra- and extracellular pathogens. According to the specific immune responses, Th cells can be classified into subtypes, Th1 and Th2 cells being the most frequently characterized classes. Th1 and Th2 cells interact with other immune cells by regulating their functions with specific cytokine production. IFN, IL-2 and TNF- are the cytokines predominantly produced by Th1 cells whereas Th2 cells produce Th2-type cytokines, such as IL-4, IL-5 and IL-13. Upon TCR activation and in the presence of polarizing cytokines, Th cells differentiate into effector subtypes from a common precursor cell. IFN and IL-12 are the predominant Th1 polarizing cytokines whereas IL-4 directs Th2 polarization. The cytokines mediate their effects through specific receptor signalling. The differentiation process is complex, involving various signalling molecules and routes, as well as functions of the specific transcription factors. The functions of the Th1/Th2 cells are tightly regulated; however, knowledge on human Th cell differentiation is, as yet, fairly poor. The susceptibility for many immune-mediated disorders often originates from disturbed Th cell responses. Thus, research is needed for defining the molecular mechanisms involved in the differentiation and balanced functions of the Th cells. Importantly, the new information obtained will be crucial for a better understanding of the pathogenesis of immune-mediated disorders, such as asthma or autoimmune diseases. In the first subproject of this thesis, the role of genetic polymorphisms in the human STAT6, GATA3 and STAT4 genes were investigated for asthma or atopy susceptibility in Finnish asthma families by association analysis. These genes code for key transcription factors regulating Th cell differentiation. The study resulted in the identification of a GATA3 haplotype that associated with asthma and related traits (high serum IgE level). In the second subproject, an optimized method for human primary T cell transfection and enrichment was established. The method can be utilized for functional studies for the selected genes of interest. The method was also utilized in the third subproject, which aimed at the identification of novel genes involved in early human Th cell polarization (0-48h) using genome-wide oligonucleotide arrays. As a result, numerous genes and ESTs with known or unknown functions were identified in the study. Using an shRNA knockdown approach, a panel of novel IL-4/STAT6 regulated genes were identified in the functional studies of the genes. Moreover, one of the genes, NDFIP2, with a previously uncharacterized role in the human Th differentiation, was observed to promote IFN production of the differentiated Th1 cells. Taken together, the results obtained have revealed potential new relevant candidate genes serving as a basis for further studies characterizing the detailed networks involved in the human Th cell differentiation as well as in the genetic susceptibility of Th-mediated immune disorders.
Resumo:
Hormone-dependent diseases, e.g. cancers, rank high in mortality in the modern world, and thus, there is an urgent need for new drugs to treat these diseases. Although the diseases are clearly hormone-dependent, changes in circulating hormone concentrations do not explain all the pathological processes observed in the diseased tissues. A more inclusive explanation is provided by intracrinology – a regulation of hormone concentrations at the target tissue level. This is mediated by the expression of a pattern of steroid-activating and -inactivating enzymes in steroid target tissues, thus enabling a concentration gradient between the blood circulation and the tissue. Hydroxysteroid (17beta) dehydrogenases (HSD17Bs) form a family of enzymes that catalyze the conversion between low active 17-ketosteroids and highly active 17beta-hydroxysteroids. HSD17B1 converts low active estrogen (E1) to highly active estradiol (E2) with high catalytic efficiency, and altered HSD17B1 expression has been associated with several hormone-dependent diseases, including breast cancer, endometriosis, endometrial hyperplasia and cancer, and ovarian epithelial cancer. Because of its putative role in E2 biosynthesis in ovaries and peripheral target tissues, HSD17B1 is considered to be a promising drug target for estrogen-dependent diseases. A few studies have indicated that the enzyme also has androgenic activity, but they have been ignored. In the present study, transgenic mice overexpressing human HSD17B1 (HSD17B1TG mice) were used to study the effects of the enzyme in vivo. Firstly, the substrate specificity of human HSD17B1 was determined in vivo. The results indicated that human HSD17B1 has significant androgenic activity in female mice in vivo, which resulted in increased fetal testosterone concentration and female disorder of sexual development appearing as masculinized phenotype (increased anogenital distance, lack of nipples, lack of vaginal opening, combination of vagina with urethra, enlarged Wolffian duct remnants in the mesovarium and enlarged female prostate). Fetal androgen exposure has been linked to polycystic ovary syndrome (PCOS) and metabolic syndrome during adulthood in experimental animals and humans, but the genes involved in PCOS are largely unknown. A putative mechanism to accumulate androgens during fetal life by HSD17B1 overexpression was shown in the present study. Furthermore, as a result of prenatal androgen exposure locally in the ovaries, HSD17B1TG females developed ovarian benign serous cystadenomas in adulthood. These benign lesions are precursors of low-grade ovarian serous tumors. Ovarian cancer ranks fifth in mortality of all female cancers in Finland, and most of the ovarian cancers arise from the surface epithelium. The formation of the lesions was prevented by prenatal antiandrogen treatment and by transplanting wild type (WT) ovaries prepubertally into HSD17B1TG females. The results obtained in our non-clinical TG mouse model, together with a literature analysis, suggest that HSD17B1 has a role in ovarian epithelial carcinogenesis, and especially in the development of serous tumors. The role of androgens in ovarian carcinogenesis is considered controversial, but the present study provides further evidence for the androgen hypothesis. Moreover, it directly links HSD17B1-induced prenatal androgen exposure to ovarian epithelial carcinogenesis in mice. As expected, significant estrogenic activity was also detected for human HSD17B1. HSD17B1TG mice had enhanced peripheral conversion of E1 to E2 in a variety of target tissues, including the uterus. Furthermore, this activity was significantly decreased by treatments with specific HSD17B1 inhibitors. As a result, several estrogen-dependent disorders were found in HSD17B1TG females. Here we report that HSD17B1TG mice invariably developed endometrial hyperplasia and failed to ovulate in adulthood. As in humans, endometrial hyperplasia in HSD17B1TG females was reversible upon ovulation induction, triggering a rise in circulating progesterone levels, and in response to exogenous progestins. Remarkably, treatment with a HSD17B1 inhibitor failed to restore ovulation, yet completely reversed the hyperplastic morphology of epithelial cells in the glandular compartment. We also demonstrate that HSD17B1 is expressed in normal human endometrium, hyperplasia, and cancer. Collectively, our non-clinical data and literature analysis suggest that HSD17B1 inhibition could be one of several possible approaches to decrease endometrial estrogen production in endometrial hyperplasia and cancer. HSD17B1 expression has been found in bones of humans and rats. The non-clinical data in the present study suggest that human HSD17B1 is likely to have an important role in the regulation of bone formation, strength and length during reproductive years in female mice. Bone density in HSD17B1TG females was highly increased in femurs, but in lesser amounts also in tibias. Especially the tibia growth plate, but not other regions of bone, was susceptible to respond to HSD17B1 inhibition by increasing bone length, whereas the inhibitors did not affect bone density. Therefore, HSD17B1 inhibitors could be safer than aromatase inhibitors in regard to bone in the treatment of breast cancer and endometriosis. Furthermore, diseases related to improper growth, are a promising new indication for HSD17B1 inhibitors.
Resumo:
Selective development of human T helper (Th) cells into functionally distinct Th1 and Th2 subtypes plays an essential role in the host immune response towards pathogens. However, abnormal function or differentiation of these cells can lead to development of various autoimmune diseases as well as asthma and allergy. Therefore, identification of key factors and the molecular mechanisms mediating Th1 and Th2 cell differentiation is important for understanding the molecular mechanisms of these diseases. The goal of this study was to identify novel factors involved in the regulation of Th1 and Th2 differentiation processes. A new method was optimized for enrichment of transiently transfected resting human primary T lymphocytes, that allowed the study of the influence of genes of interest in human Th1/Th2 cell differentiation and other primary Th cell functions. Functional characterization of PRELI, a novel activation-induced protein in human Th cells, identified it as a mitochondrial protein involved in the regulation of Th cell differentiation and apoptosis. By influencing the intracellular redox state, PRELI induces mitochondrial apoptosis pathway and downregulates STAT6 and Th2 differentiation. The data suggested that Calpain, an oxidative stress induced cysteine protease, is involved as a mediator in PRELI-induced downregulation of STAT6. PIM serine/threonine-specific kinases were identified as new regulators of human Th1 cell differentiation. PIM1 and PIM2 kinases were shown to be preferentially expressed in Th1 cells as compared to Th2 cells. RNA interference studies showed that PIM kinases enhance the production of IFN, the hallmark cytokine produced by Th1 cells. They also induce the expression of the key Th1-driving factor T-bet and the IL-12 signaling pathway during early phases of Th1 cell differentiation. Taken together, new regulators of human T helper cell differentiation were identified in this study, which provides new insights into the signaling mechanisms controlling the selective activation of human Th cell subsets.
Resumo:
Our understanding of the pathogenesis of organ‐specific autoinflammation has been restricted by limited access to the target organs. Peripheral blood, however, as a preferred transportation route for immune cells, provides a window to assess the entire immune system throughout the body. Transcriptional profiling with RNA stabilizing blood collection tubes reflects in vivo expression profiles at the time the blood is drawn, allowing detection of the disease activity in different samples or within the same sample over time. The main objective of this Ph.D. study was to apply gene‐expression microarrays in the characterization of peripheral blood transcriptional profiles in patients with autoimmune diseases. To achieve this goal a custom cDNA microarray targeted for gene‐expression profiling of human immune system was designed and produced. Sample collection and preparation was then optimized to allow gene‐expression profiling from whole‐blood samples. To overcome challenges resulting from minute amounts of sample material, RNA amplification was successfully applied to study pregnancy related immunosuppression in patients with multiple sclerosis (MS). Furthermore, similar sample preparation was applied to characterize longitudinal genome‐wide expression profiles in children with type 1 diabetes (T1D) associated autoantibodies and eventually clinical T1D. Blood transcriptome analyses, using both the ImmunoChip cDNA microarray with targeted probe selection and genome‐wide Affymetrix U133 Plus 2.0 oligonucleotide array, enabled monitoring of autoimmune activity. Novel disease related genes and general autoimmune signatures were identified. Notably, down‐regulation of the HLA class Ib molecules in peripheral blood was associated with disease activity in both MS and T1D. Taken together, these studies demonstrate the potential of peripheral blood transcriptional profiling in biomedical research and diagnostics. Imbalances in peripheral blood transcriptional activity may reveal dynamic changes that are relevant for the disease but might be completely missed in conventional cross‐sectional studies.
Resumo:
Human embryonic stem cells are pluripotent cells capable of renewing themselves and differentiating to specialized cell types. Because of their unique regenerative potential, pluripotent cells offer new opportunities for disease modeling, development of regenerative therapies, and treating diseases. Before pluripotent cells can be used in any therapeutic applications, there are numerous challenges to overcome. For instance, the key regulators of pluripotency need to be clarified. In addition, long term culture of pluripotent cells is associated with the accumulation of karyotypic abnormalities, which is a concern regarding the safe use of the cells for therapeutic purposes. The goal of the work presented in this thesis was to identify new factors involved in the maintenance of pluripotency, and to further characterize molecular mechanisms of selected candidate genes. Furthermore, we aimed to set up a new method for analyzing genomic integrity of pluripotent cells. The experimental design applied in this study involved a wide range of molecular biology, genome-wide, and computational techniques to study the pluripotency of stem cells and the functions of the target genes. In collaboration with instrument and reagent company Perkin Elmer, KaryoliteTM BoBsTM was implemented for detecting karyotypic changes of pluripotent cells. Novel genes were identified that are highly and specifically expressed in hES cells. Of these genes, L1TD1 and POLR3G were chosen for further investigation. The results revealed that both of these factors are vital for the maintenance of pluripotency and self-renewal of the hESCs. KaryoliteTM BoBsTM was validated as a novel method to detect karyotypic abnormalities in pluripotent stem cells. The results presented in this thesis offer significant new information on the regulatory networks associated with pluripotency. The results will facilitate in understanding developmental and cancer biology, as well as creating stem cell based applications. KaryoliteTM BoBsTM provides rapid, high-throughput, and cost-efficient tool for screening of human pluripotent cell cultures.
Resumo:
Background: Maternal diabetes affects many fetal organ systems, including the vasculature and the lungs. The offspring of diabetic mothers have respiratory adaptation problems after birth. The mechanisms are multifactorial and the effects are prolonged during the postnatal period. An increasing incidence of diabetic pregnancies accentuates the importance of identifying the pathological mechanisms, which cause the metabolic and genetic changes that occur in offspring, born to diabetic mothers. Aims and methods: The aim of this thesis was to determine changes both in human umbilical cord exposed to maternal type 1 diabetes and in neonatal rat lungs after streptozotocin-induced maternal hyperglycemia, during pregnancy. Rat lungs were used as a model for the potential disease mechanisms. Gene expression alterations were determined in human umbilical cords at birth and in rat pup lungs at two week of age. During the first two postnatal weeks, rat lung development was studied morphologically and histologically. Further, the effect of postnatal hyperoxia on hyperglycemia-primed rat lungs was investigated at one week of age to mimic the clinical situation of supplemental oxygen treatment. Results: In the umbilical cord, maternal diabetes had a major negative effect on the expression of genes involved in blood vessel development. The genes regulating vascular tone were also affected. In neonatal rat lungs, intrauterine hyperglycemia had a prolonged effect on gene expression during late alveolarization. The most affected pathway was the upregulation of extracellular matrix proteins. Newborn rat lungs exposed to intrauterine hyperglycemia had thinner saccular walls without changes in airspace size, a smaller relative lung weight and lung total tissue area, and increased cellular apoptosis and proliferation compared to control lungs, possibly reflecting an aberrant maturational adaptation. At one and two weeks of age, cell proliferation and secondary crest formation were accelerated in hyperglycemia-exposed lungs. Postnatal hyperoxic exposure, alone caused arrested alveolarization with thin-walled and enlarged alveoli. In contrast, the dual exposure of intrauterine hyperglycemia and postnatal hyperoxia resulted in the phenotype of thick septa together with arrested alveolarization and decreased number of small pulmonary arteries. Conclusions: Maternal diabetic environment seems to alter the umbilical cord gene expression profile of the regulation of vascular development and function. Fetal hyperglycemia may additionally affect the genetic regulation of the postnatal lung development and may actually induce prolonged structural alterations in neonatal lungs together with a modifying effect on the deleterious pulmonary exposure of postnatal hyperoxia. This, combined with the novel human umbilical cord gene data could serve as stepping stones for future therapies to curb developmental aberrations.
Resumo:
Activated T helper (Th) cells have ability to differentiate into functionally distinct Th1, Th2 and Th17 subsets through a series of overlapping networks that include signaling and transcriptional control and the epigenetic mechanisms to direct immune responses. However, inappropriate execution in the differentiation process and abnormal function of these Th cells can lead to the development of several immune mediated diseases. Therefore, the thesis aimed at identifying genes and gene regulatory mechanisms responsible for Th17 differentiation and to study epigenetic changes associated with early stage of Th1/Th2 cell differentiation. Genome wide transcriptional profiling during early stages of human Th17 cell differentiation demonstrated differential regulation of several novel and currently known genes associated with Th17 differentiation. Selected candidate genes were further validated at protein level and their specificity for Th17 as compared to other T helper subsets was analyzed. Moreover, combination of RNA interference-mediated downregulation of gene expression, genome-wide transcriptome profiling and chromatin immunoprecipitation followed by massive parallel sequencing (ChIP-seq), combined with computational data integration lead to the identification of direct and indirect target genes of STAT3, which is a pivotal upstream transcription factor for Th17 cell polarization. Results indicated that STAT3 directly regulates the expression of several genes that are known to play a role in activation, differentiation, proliferation, and survival of Th17 cells. These results provide a basis for constructing a network regulating gene expression during early human Th17 differentiation. Th1 and Th2 lineage specific enhancers were identified from genome-wide maps of histone modifications generated from the cells differentiating towards Th1 and Th2 lineages at 72h. Further analysis of lineage-specific enhancers revealed known and novel transcription factors that potentially control lineage-specific gene expression. Finally, we found an overlap of a subset of enhancers with SNPs associated with autoimmune diseases through GWASs suggesting a potential role for enhancer elements in the disease development. In conclusion, the results obtained have extended our knowledge of Th differentiation and provided new mechanistic insights into dysregulation of Th cell differentiation in human immune mediated diseases.
Resumo:
The human immune system is constantly interacting with the surrounding stimuli and microorganisms. However, when directed against self or harmless antigens, these vital defense mechanisms can cause great damage. In addition, the understanding the underlying mechanism of several human diseases caused by aberrant immune cell functions, for instance type 1 diabetes and allergies, remains far from being complete. In this Ph.D. study these questions were addressed using genome-wide transcriptomic analyses. Asthma and allergies are characterized by a hyperactive response of the T helper 2 (Th2) immune cells. In this study, the target genes of the STAT6 transcription factor in naïve human T cells were identified with RNAi for the first time. STAT6 was shown to act as a central activator of the genes expression upon IL-4 signaling, with both direct and indirect effects on Th2 cell transcriptome. The core transcription factor network induced by IL-4 was identified from a kinetic analysis of the transcriptome. Type 1 diabetes is an autoimmune disease influenced by both the genetic susceptibility of an individual and the disease-triggering environmental factors. To improve understanding of the autoimmune processes driving pathogenesis in the prediabetic phase in humans, a unique series of prospective whole-blood RNA samples collected from HLA-susceptible children in the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) study was studied. Changes in different timewindows of the pathogenesis process were identified, and especially the type 1 interferon response was activated early and throughout the preclinical T1D. The hygiene hypothesis states that allergic diseases, and lately also autoimmune diseases, could be prevented by infections and other microbial contacts acquired in early childhood, or even prenatally. To study the effects of the standard of hygiene on the development of neonatal immune system, cord blood samples from children born in Finland (high standard of living), Estonia (rapid economic growth) and Russian Karelia (low standard of living) were compared. Children born in Russian Karelia deviated from Finnish and Estonian children in many aspects of the neonatal immune system, which was developmentally more mature in Karelia, resembling that of older infants. The results of this thesis offer significant new information on the regulatory networks associated with immune-mediated diseases in human. The results will facilitate understanding and further research on the role of the identified target genes and mechanisms driving the allergic inflammation and type 1 diabetes, hopefully leading to a new era of drug development.
Resumo:
Nasopharyngeal bacteria can asymptomatically colonize the nasopharynx of infants and young children but are also associated with the development of respiratory infections and diseases. Such nasopharyngeal bacteria include Streptococcus pneumoniae, Moraxella catarrhalis, Haemophilus influenzae and Staphylococcus aureus. The host defense against invading pathogens is largely relies germline-encoded pattern recognition receptors (PRR), which are expressed on the cells of innate immunity, and different cytokines. These include toll-like receptors (TLR), mannose-binding lectin (MBL) and different cytokines such as IL-17A. Single nucleotide polymorphisms (SNP) in these receptors and cytokines have been reported. The aim of this study was to investigate genetic polymorphisms in the genes for TLR2, 3 and 4, MBL as well as for IL-17A and their associations with nasopharyngeal pathogenic bacterial colonization during a two-year follow-up. The study revealed that polymorphisms in TLRs, MBL2 and IL17A are associated with the nasopharyngeal bacterial colonization in young children. Healthy young (2.6 months of age) children with variant types of MBL2, TLR2 R753Q or TLR4 D299G had an increased risk to be colonized by S. pneumonia, S. aureus or M. catarrhalis, respectively. Moreover, variant types of MBL2 in healthy children with might facilitate human rhinovirus (HRV)-induced S. pneumoniae colonization at 2.6 months of age. The polymorphism of TLR4 D299G was shown to be associated with M. catarrhalis colonization throughout the whole two-year follow-up (2.6, 13 and 24 months of age) and also with the bacterial load of this pathogen. Also, the polymorphism of IL17A G152A was shown to be associated with increased risk to be colonized by S. pneumoniae at 13 and 24 months of age. Furthermore, the results suggest that IL17A G152A has an effect on production of serum IL-17A already at young age. In conclusion, the results of this study indicate that polymorphisms in the key PRRs and IL17A seem to play an important role to colonization of S. pneumoniae, M. catarrhalis, and S. aureus in healthy young Finnish children. The nasopharyngeal colonization by these pathogenic bacteria may further promote the development of respiratory infections and may be related to development of asthma and allergy in the later life of children. These findings offer a possible explanation why some children have more respiratory infections than other children and provide a rational basis for future studies in this field.
Resumo:
The balance of T helper (Th) cell differentiation is the fundamental process that ensures that the immune system functions correctly and effectively. The differentiation is a fine tuned event, the outcome of which is driven by activation of the T-cell in response to recognition of the specific antigen presented. The co-stimulatory signals from the surrounding cytokine milieu help to determine the outcome. An impairment in the differentiation processes may lead to an imbalance in immune responses and lead to immune-mediated pathologies. An over-representation of Th1 type cytokine producing cells leads to tissue-specific inflammation and autoimmunity, and excessive Th2 response is causative for atopy, asthma and allergy. The major factors of Th-cell differentiation and in the related disease mechanisms have been extensively studied, but the fine tuning of these processes by the other factors cannot be discarded. In the work presented in this thesis, the association of T-cell receptor costimulatory molecules CTLA4 and ICOS with autoimmune diabetes were studied. The underlying aspect of the study was to explore the polymorphism in these genes with the different disease rates observed in two geographically close populations. The main focus of this thesis was set on a GTPase of the immunity associated protein (GIMAP) family of small GTPases. GIMAP genes and proteins are differentially regulated during human Th-cell differentiation and have been linked to immune-mediated disorders. GIMAP4 is believed to contribute to the immunological balance via its role in T-cell survival. To elucidate the function of GIMAP4 and GIMAP5 and their role in human immunity, a study combining genetic association in different immunological diseases and complementing functional analyses was conducted. The study revealed interesting connections with the high susceptibility risk genes. In addition, the role of GIMAP4 during Th1-cell differentiation was investigated. A novel function of GIMAP4 in relation to cytokine secretion was discovered. Further assessment of GIMAP4 and GIMAP5 effect for the transcriptomic profile of differentiating Th1-cells revealed new insights for GIMAP4 and GIMAP5 function.