3 resultados para Hookworm, Necator Americanus, Haemoglobin, Cysteine Protease, Aspartic Protease

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selective development of human T helper (Th) cells into functionally distinct Th1 and Th2 subtypes plays an essential role in the host immune response towards pathogens. However, abnormal function or differentiation of these cells can lead to development of various autoimmune diseases as well as asthma and allergy. Therefore, identification of key factors and the molecular mechanisms mediating Th1 and Th2 cell differentiation is important for understanding the molecular mechanisms of these diseases. The goal of this study was to identify novel factors involved in the regulation of Th1 and Th2 differentiation processes. A new method was optimized for enrichment of transiently transfected resting human primary T lymphocytes, that allowed the study of the influence of genes of interest in human Th1/Th2 cell differentiation and other primary Th cell functions. Functional characterization of PRELI, a novel activation-induced protein in human Th cells, identified it as a mitochondrial protein involved in the regulation of Th cell differentiation and apoptosis. By influencing the intracellular redox state, PRELI induces mitochondrial apoptosis pathway and downregulates STAT6 and Th2 differentiation. The data suggested that Calpain, an oxidative stress induced cysteine protease, is involved as a mediator in PRELI-induced downregulation of STAT6. PIM serine/threonine-specific kinases were identified as new regulators of human Th1 cell differentiation. PIM1 and PIM2 kinases were shown to be preferentially expressed in Th1 cells as compared to Th2 cells. RNA interference studies showed that PIM kinases enhance the production of IFN, the hallmark cytokine produced by Th1 cells. They also induce the expression of the key Th1-driving factor T-bet and the IL-12 signaling pathway during early phases of Th1 cell differentiation. Taken together, new regulators of human T helper cell differentiation were identified in this study, which provides new insights into the signaling mechanisms controlling the selective activation of human Th cell subsets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An aging population and increasing rates of diabetes mellitus contribute to a high prevalence of kidney dysfunction – approximately 10 percent of adults in developed countries have chronic kidney disease (CKD). CKD is a progressive loss of kidney function and this remains permanent. Early recognition of this condition is important for prevention or impeding severe adverse cardiac and renal outcomes. Cystatin C is a low molecular weight cysteine protease inhibitor that has emerged as a biomarker of kidney function. The special potential of plasma cystatin C in this setting is related to its independency of muscle mass, which is a remarkable limitation of the traditional marker creatinine. Cystatin C is a sensitive marker in diagnosing mild and moderate CKD, especially in small children, in the elderly and in conditions where muscle mass is affected. Cystatin C is quantified with immunoassays, mainly based on particle-enhanced nephelometry (PENIA) or turbidimetry (PETIA). The aim of this study was to develop a rapid and reliable assay for quantification of human cystatin C in plasma or serum by utilizing time-resolved fluorescence-based immunoassay methods. This was accomplished by utilizing different antibodies, including polyclonal and 7 monoclonal antibodies against cystatin C. Different assay designs were tested and the best assay was further modified to a dry-reagent double monoclonal assay run on an automated immunonalyzer. This assay was evaluated for clinical performance in estimating reduced kidney function and in predicting risk of adverse outcomes in patients with non-ST elevation acute coronary syndrome. Of the tested assay designs, heterogeneous non-competitive assay had the best performace and was chosen to be developed further. As an automated double monoclonal assay, this assay enabled a reliable measurement of clinically relevant cystatin C concentrations. It also showed a stronger concordance with the reference clearance method than the conventional PETIA method in patients with reduced kidney function. Risk of all-cause mortality and combined events, defined by death and myocardial infarction, increased with higher cystatin C and cystatin C remained an independent predictor of death and combined events after adjustment to nonbiochemical baseline factors. In conclusion, the developed dry-reagent double monoclonal assay allows rapid and reliable quantitative measurement of cystatin C. As measured with the developed assay, cystatin C is a potential predictor of adverse outcomes in cardiac patients.