3 resultados para Homotopy
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
This thesis concentrates on the topological defects of spin-1 and spin-2 Bose-Einstein condensates, the ground states of spin-3 condensates, and the inert states of spinor condensates with arbitrary spin. Our work is based on the description of a spinor condensate of spin-S atoms in terms of a state vector of a spin-S particle. The results of the homotopy theory are used to study the existence and structure of the topological defects in spinor condensates. We construct examples of defects, study their energetics, and examine how their stability is affected by the presence of an external magnetic field. The ground states of spin-3 condensates are calculated using analytical and numerical means. Special emphasis is put on the ground states of a chromium condensate, whose dependence on the magnetic dipole-dipole interaction is studied. A simple geometrical method for the calculation of inert states of spinor condensates is presented. This method is used to find candidates for the ground states of spin-S condensates.
Resumo:
Theultimate goal of any research in the mechanism/kinematic/design area may be called predictive design, ie the optimisation of mechanism proportions in the design stage without requiring extensive life and wear testing. This is an ambitious goal and can be realised through development and refinement of numerical (computational) technology in order to facilitate the design analysis and optimisation of complex mechanisms, mechanical components and systems. As a part of the systematic design methodology this thesis concentrates on kinematic synthesis (kinematic design and analysis) methods in the mechanism synthesis process. The main task of kinematic design is to find all possible solutions in the form of structural parameters to accomplish the desired requirements of motion. Main formulations of kinematic design can be broadly divided to exact synthesis and approximate synthesis formulations. The exact synthesis formulation is based in solving n linear or nonlinear equations in n variables and the solutions for the problem areget by adopting closed form classical or modern algebraic solution methods or using numerical solution methods based on the polynomial continuation or homotopy. The approximate synthesis formulations is based on minimising the approximation error by direct optimisation The main drawbacks of exact synthesis formulationare: (ia) limitations of number of design specifications and (iia) failure in handling design constraints- especially inequality constraints. The main drawbacks of approximate synthesis formulations are: (ib) it is difficult to choose a proper initial linkage and (iib) it is hard to find more than one solution. Recentformulations in solving the approximate synthesis problem adopts polynomial continuation providing several solutions, but it can not handle inequality const-raints. Based on the practical design needs the mixed exact-approximate position synthesis with two exact and an unlimited number of approximate positions has also been developed. The solutions space is presented as a ground pivot map but thepole between the exact positions cannot be selected as a ground pivot. In this thesis the exact synthesis problem of planar mechanism is solved by generating all possible solutions for the optimisation process ¿ including solutions in positive dimensional solution sets - within inequality constraints of structural parameters. Through the literature research it is first shown that the algebraic and numerical solution methods ¿ used in the research area of computational kinematics ¿ are capable of solving non-parametric algebraic systems of n equations inn variables and cannot handle the singularities associated with positive-dimensional solution sets. In this thesis the problem of positive-dimensional solutionsets is solved adopting the main principles from mathematical research area of algebraic geometry in solving parametric ( in the mathematical sense that all parameter values are considered ¿ including the degenerate cases ¿ for which the system is solvable ) algebraic systems of n equations and at least n+1 variables.Adopting the developed solution method in solving the dyadic equations in direct polynomial form in two- to three-precision-points it has been algebraically proved and numerically demonstrated that the map of the ground pivots is ambiguousand that the singularities associated with positive-dimensional solution sets can be solved. The positive-dimensional solution sets associated with the poles might contain physically meaningful solutions in the form of optimal defectfree mechanisms. Traditionally the mechanism optimisation of hydraulically driven boommechanisms is done at early state of the design process. This will result in optimal component design rather than optimal system level design. Modern mechanismoptimisation at system level demands integration of kinematic design methods with mechanical system simulation techniques. In this thesis a new kinematic design method for hydraulically driven boom mechanism is developed and integrated in mechanical system simulation techniques. The developed kinematic design method is based on the combinations of two-precision-point formulation and on optimisation ( with mathematical programming techniques or adopting optimisation methods based on probability and statistics ) of substructures using calculated criteria from the system level response of multidegree-of-freedom mechanisms. Eg. by adopting the mixed exact-approximate position synthesis in direct optimisation (using mathematical programming techniques) with two exact positions and an unlimitednumber of approximate positions the drawbacks of (ia)-(iib) has been cancelled.The design principles of the developed method are based on the design-tree -approach of the mechanical systems and the design method ¿ in principle ¿ is capable of capturing the interrelationship between kinematic and dynamic synthesis simultaneously when the developed kinematic design method is integrated with the mechanical system simulation techniques.
Resumo:
The topological solitons of two classical field theories, the Faddeev-Skyrme model and the Ginzburg-Landau model are studied numerically and analytically in this work. The aim is to gain information on the existence and properties of these topological solitons, their structure and behaviour under relaxation. First, the conditions and mechanisms leading to the possibility of topological solitons are explored from the field theoretical point of view. This leads one to consider continuous deformations of the solutions of the equations of motion. The results of algebraic topology necessary for the systematic treatment of such deformations are reviewed and methods of determining the homotopy classes of topological solitons are presented. The Faddeev-Skyrme and Ginzburg-Landau models are presented, some earlier results reviewed and the numerical methods used in this work are described. The topological solitons of the Faddeev-Skyrme model, Hopfions, are found to follow the same mechanisms of relaxation in three different domains with three different topological classifications. For two of the domains, the necessary but unusual topological classification is presented. Finite size topological solitons are not found in the Ginzburg-Landau model and a scaling argument is used to suggest that there are indeed none unless a certain modification to the model, due to R. S. Ward, is made. In that case, the Hopfions of the Faddeev-Skyrme model are seen to be present for some parameter values. A boundary in the parameter space separating the region where the Hopfions exist and the area where they do not exist is found and the behaviour of the Hopfion energy on this boundary is studied.