11 resultados para High-performance computing hyperspectral imaging
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
PhotoAcoustic Imaging (PAI) is a branch in clinical and pre-clinical imaging, that refers to the techniques mapping acoustic signals caused by the absorption of the short laser pulse. This conversion of electromagnetic energy of the light to the mechanical (acoustic) energy is usually called photoacoustic effect. PAI, by combining optical excitation with acoustical detection, is able to preserve the diffraction limited spatial resolution. At the same time, the penetration depth is extended beyond the diffusive limit. The Laser-Scanning PhotoAcoustic Microscope system (LS-PAM) has been developed, that offers the axial resolution of 7.75 µm with the lateral resolution better than 10 µm. The first in vivo imaging experiments were carried out. Thus, in vivo label-free imaging of the mouse ear was performed. The principle possibility to image vessels located in deep layers of the mouse skin was shown. As well as that, a gold printing sample, vasculature of the Chick Chorioallantoic Membrane Assay, Drosophila larvae were imaged by PAI. During the experimental work, a totally new application of PAM was found, in which the acoustic waves, generated by incident light can be used for further imaging of another sample. In order to enhance the performance of the presented system two main recommendation can be offered. First, the current system should be transformed into reflection-mode setup system. Second, a more powerful source of light with the sufficient repetition rate should be introduced into the system.
Resumo:
Suunniteltiin ja rakennettiin suoraa vääntömomenttisäätöä soveltava taajuudenmuuttajakäyttö oikosulkumoottorin ohjaukseen korvaamaan passiivinen jarrukäyttö. Laite on kuntoutuslaite, jolla tehdään lihasvoiman mittauksia ja voimaharjoituksia. Selvitettiin kaupallisten moottoreiden ja taajuudenmuuttajien suoritusominaisuuksia ja tämän perusteella valittiin käyttöön sopivat laitteet. Työssä esitetään kaksi oikosulkumoottorin ohjaustapaa: vektorisäätö ja suora vääntömomenttisäätö. Merkittävin osa tästä työstä käsittelee - tarkan turvallisuussuunnitelman lisäksi - kuntoutuslaitteen prototyypin komponentteja, kokoamista ja suoritustestien tuloksia.
Resumo:
Imaging systems have developed latest years and developing is still continuing following years. Manufacturers of imaging systems give promises for the quality of the performance of imaging systems to advertise their products. Promises for the quality of the performance are often so good that they will not be tested in normal usage. The main target in this research is to evaluate the quality of the performance of two imaging systems: Scanner and CCD color camera. Optical measurement procedures were planned to evaluate the quality of imaging performances. Other target in this research is to evaluate calibration programs for the camera and the scanner. Measuring targets had to choose to evaluate the quality of imaging performances. Manufacturers have given definitions for targets. The third task in this research is to evaluate and consider how good measuring targets are.
Resumo:
Numerical weather prediction and climate simulation have been among the computationally most demanding applications of high performance computing eversince they were started in the 1950's. Since the 1980's, the most powerful computers have featured an ever larger number of processors. By the early 2000's, this number is often several thousand. An operational weather model must use all these processors in a highly coordinated fashion. The critical resource in running such models is not computation, but the amount of necessary communication between the processors. The communication capacity of parallel computers often fallsfar short of their computational power. The articles in this thesis cover fourteen years of research into how to harness thousands of processors on a single weather forecast or climate simulation, so that the application can benefit as much as possible from the power of parallel high performance computers. The resultsattained in these articles have already been widely applied, so that currently most of the organizations that carry out global weather forecasting or climate simulation anywhere in the world use methods introduced in them. Some further studies extend parallelization opportunities into other parts of the weather forecasting environment, in particular to data assimilation of satellite observations.
Resumo:
Cloud computing enables on-demand network access to shared resources (e.g., computation, networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort. Cloud computing refers to both the applications delivered as services over the Internet and the hardware and system software in the data centers. Software as a service (SaaS) is part of cloud computing. It is one of the cloud service models. SaaS is software deployed as a hosted service and accessed over the Internet. In SaaS, the consumer uses the provider‘s applications running in the cloud. SaaS separates the possession and ownership of software from its use. The applications can be accessed from any device through a thin client interface. A typical SaaS application is used with a web browser based on monthly pricing. In this thesis, the characteristics of cloud computing and SaaS are presented. Also, a few implementation platforms for SaaS are discussed. Then, four different SaaS implementation cases and one transformation case are deliberated. The pros and cons of SaaS are studied. This is done based on literature references and analysis of the SaaS implementations and the transformation case. The analysis is done both from the customer‘s and service provider‘s point of view. In addition, the pros and cons of on-premises software are listed. The purpose of this thesis is to find when SaaS should be utilized and when it is better to choose a traditional on-premises software. The qualities of SaaS bring many benefits both for the customer as well as the provider. A customer should utilize SaaS when it provides cost savings, ease, and scalability over on-premises software. SaaS is reasonable when the customer does not need tailoring, but he only needs a simple, general-purpose service, and the application supports customer‘s core business. A provider should utilize SaaS when it offers cost savings, scalability, faster development, and wider customer base over on-premises software. It is wise to choose SaaS when the application is cheap, aimed at mass market, needs frequent updating, needs high performance computing, needs storing large amounts of data, or there is some other direct value from the cloud infrastructure.
Resumo:
Under the circumstances of the increasing market pressure, enterprises try to improve their competitive position by development efforts, and a business development project is one tool for that. There are not many answers to the question of how the development projects launched to improve the business performance in SMEs have succeeded. Theacademic interest in the business development project success has mainly focused on projects implemented in larger organisations rather than in SMEs. The previous studies on the business success of SMEs have mainly focused on new business ventures rather than on existing SMEs. However, nowadays a large number of business development projects are undertaken in existing SMEs, where they can pose a great challenge. This study focuses on business development success in SMEs thathave already established their business. The objective of the present study is to gain a deep understanding on business development project success in the SME-context and to identify the dimensions and factors affecting the project success. Further, the aim is to clarify how the business development projects implemented in SMEs have affected their performance. The empirical evidence is based on multiple case study. This study builds a framework for a generic theory of business development success in the SME-context, based on literature from the areas ofproject and change management, entrepreneurship and small business management, as well as performance measurement, and on empirical evidence from SMES. The framework consists of five success dimensions: entrepreneurial, project preparation, change management, project management and project success. The framework provides a systematic way for analysing the business development project and its impact on the performance and on the performing company. This case evidence indicates that successful business development projects have a balanced, high performance concerning all the dimensions. Good performance in one dimension is not enoughfor the project success, but it gives a good ground for the other dimensions. The other way round, poor performance in one success dimension affects the others, leading to poor performance of the project. In the SME-context the business development project success seems to be dependent on several interrelated dimensions and factors. Success in one area leads to success in other areas, and so creates an upward success spiral. Failure in one area seems to lead to failure in other areas, creating a downward failure spiral. The study indicates that the internal business development projects have affected the SMEs' performance widely also on areas and functions not initially targeted. The implications cover all thesuccess categories: the project efficiency, the impact on the customer, the business success and the future potentiality. With successful cases, the success tends to spread out to areas and functions not mentioned as the project goals, andwith unsuccessful cases the failure seems to spread out widely to the SMEs' other functions. This study also indicates that the most important key factors for successful business development project implementation are the strength of intention, business ability, knowledge, motivation and participation of the employees, as well as adequate and well-timed training provided to the employees.
Resumo:
This thesis presents an alternative approach to the analytical design of surface-mounted axialflux permanent-magnet machines. Emphasis has been placed on the design of axial-flux machines with a one-rotor-two-stators configuration. The design model developed in this study incorporates facilities to include both the electromagnetic design and thermal design of the machine as well as to take into consideration the complexity of the permanent-magnet shapes, which is a typical requirement for the design of high-performance permanent-magnet motors. A prototype machine with rated 5 kW output power at 300 min-1 rotation speed has been designed and constructed for the purposesof ascertaining the results obtained from the analytical design model. A comparative study of low-speed axial-flux and low-speed radial-flux permanent-magnet machines is presented. The comparative study concentrates on 55 kW machines with rotation speeds 150 min-1, 300 min-1 and 600 min-1 and is based on calculated designs. A novel comparison method is introduced. The method takes into account the mechanical constraints of the machine and enables comparison of the designed machines, with respect to the volume, efficiency and cost aspects of each machine. It is shown that an axial-flux permanent-magnet machine with one-rotor-two-stators configuration has generally a weaker efficiency than a radial-flux permanent-magnet machine if for all designs the same electric loading, air-gap flux density and current density have been applied. On the other hand, axial-flux machines are usually smaller in volume, especially when compared to radial-flux machines for which the length ratio (axial length of stator stack vs. air-gap diameter)is below 0.5. The comparison results show also that radial-flux machines with alow number of pole pairs, p < 4, outperform the corresponding axial-flux machines.
Resumo:
Viime vuosien nopea kehitys on kiihdyttänyt uusien lääkkeiden kehittämisprosessia. Kombinatorinen kemia on tehnyt mahdolliseksi syntetisoida suuria kokoelmia rakenteeltaan toisistaan poikkeavia molekyylejä, nk. kombinatorisia kirjastoja, biologista seulontaa varten. Siinä molekyylien rakenteeseen liittyvä aktiivisuus tutkitaan useilla erilaisilla biologisilla testeillä mahdollisten "osumien" löytämiseksi, joista osasta saatetaan myöhemmin kehittää uusia lääkeaineita. Jotta biologisten tutkimusten tulokset olisivat luotettavia, on syntetisoitujen komponenttien oltava mahdollisimman puhtaita. Tämän vuoksi tarvitaan HTP-puhdistusta korkealaatuisten komponenttien ja luotettavan biologisen tiedon takaamiseksi. Jatkuvasti kasvavat tuotantovaatimukset ovat johtaneet näiden puhdistustekniikoiden automatisointiin ja rinnakkaistamiseen. Preparatiivinen LC/MS soveltuu kombinatoristen kirjastojen nopeaan ja tehokkaaseen puhdistamiseen. Monet tekijät, esimerkiksi erotuskolonnin ominaisuudet sekä virtausgradientti, vaikuttavat preparatiivisen LC/MS puhdistusprosessin tehokkuuteen. Nämä parametrit on optimoitava parhaan tuloksen saamiseksi. Tässä työssä tutkittiin emäksisiä komponentteja erilaisissa virtausolosuhteissa. Menetelmä kombinatoristen kirjastojen puhtaustason määrittämiseksi LC/MS-puhdistuksen jälkeen optimoitiin ja määritettiin puhtaus joillekin komponenteille eri kirjastoista ennen puhdistusta.
Resumo:
The papermaking industry has been continuously developing intelligent solutions to characterize the raw materials it uses, to control the manufacturing process in a robust way, and to guarantee the desired quality of the end product. Based on the much improved imaging techniques and image-based analysis methods, it has become possible to look inside the manufacturing pipeline and propose more effective alternatives to human expertise. This study is focused on the development of image analyses methods for the pulping process of papermaking. Pulping starts with wood disintegration and forming the fiber suspension that is subsequently bleached, mixed with additives and chemicals, and finally dried and shipped to the papermaking mills. At each stage of the process it is important to analyze the properties of the raw material to guarantee the product quality. In order to evaluate properties of fibers, the main component of the pulp suspension, a framework for fiber characterization based on microscopic images is proposed in this thesis as the first contribution. The framework allows computation of fiber length and curl index correlating well with the ground truth values. The bubble detection method, the second contribution, was developed in order to estimate the gas volume at the delignification stage of the pulping process based on high-resolution in-line imaging. The gas volume was estimated accurately and the solution enabled just-in-time process termination whereas the accurate estimation of bubble size categories still remained challenging. As the third contribution of the study, optical flow computation was studied and the methods were successfully applied to pulp flow velocity estimation based on double-exposed images. Finally, a framework for classifying dirt particles in dried pulp sheets, including the semisynthetic ground truth generation, feature selection, and performance comparison of the state-of-the-art classification techniques, was proposed as the fourth contribution. The framework was successfully tested on the semisynthetic and real-world pulp sheet images. These four contributions assist in developing an integrated factory-level vision-based process control.
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014