5 resultados para High resolution microscopy

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

PhotoAcoustic Imaging (PAI) is a branch in clinical and pre-clinical imaging, that refers to the techniques mapping acoustic signals caused by the absorption of the short laser pulse. This conversion of electromagnetic energy of the light to the mechanical (acoustic) energy is usually called photoacoustic effect. PAI, by combining optical excitation with acoustical detection, is able to preserve the diffraction limited spatial resolution. At the same time, the penetration depth is extended beyond the diffusive limit. The Laser-Scanning PhotoAcoustic Microscope system (LS-PAM) has been developed, that offers the axial resolution of 7.75 µm with the lateral resolution better than 10 µm. The first in vivo imaging experiments were carried out. Thus, in vivo label-free imaging of the mouse ear was performed. The principle possibility to image vessels located in deep layers of the mouse skin was shown. As well as that, a gold printing sample, vasculature of the Chick Chorioallantoic Membrane Assay, Drosophila larvae were imaged by PAI. During the experimental work, a totally new application of PAM was found, in which the acoustic waves, generated by incident light can be used for further imaging of another sample. In order to enhance the performance of the presented system two main recommendation can be offered. First, the current system should be transformed into reflection-mode setup system. Second, a more powerful source of light with the sufficient repetition rate should be introduced into the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human striatum is a heterogeneous structure representing a major part of the dopamine (DA) system’s basal ganglia input and output. Positron emission tomography (PET) is a powerful tool for imaging DA neurotransmission. However, PET measurements suffer from bias caused by the low spatial resolution, especially when imaging small, D2/3 -rich structures such as the ventral striatum (VST). The brain dedicated high-resolution PET scanner, ECAT HRRT (Siemens Medical Solutions, Knoxville, TN, USA) has superior resolution capabilities than its predecessors. In the quantification of striatal D2/3 binding, the in vivo highly selective D2/3 antagonist [11C] raclopride is recognized as a well-validated tracer. The aim of this thesis was to use a traditional test-retest setting to evaluate the feasibility of utilizing the HRRT scanner for exploring not only small brain regions such as the VST but also low density D2/3 areas such as cortex. It was demonstrated that the measurement of striatal D2/3 binding was very reliable, even when studying small brain structures or prolonging the scanning interval. Furthermore, the cortical test-retest parameters displayed good to moderate reproducibility. For the first time in vivo, it was revealed that there are significant divergent rostrocaudal gradients of [11C]raclopride binding in striatal subregions. These results indicate that high-resolution [11C]raclopride PET is very reliable and its improved sensitivity means that it should be possible to detect the often very subtle changes occurring in DA transmission. Another major advantage is the possibility to measure simultaneously striatal and cortical areas. The divergent gradients of D2/3 binding may have functional significance and the average distribution binding could serve as the basis for a future database. Key words: dopamine, PET, HRRT, [11C]raclopride, striatum, VST, gradients, test-retest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical microscopy is living its renaissance. The diffraction limit, although still physically true, plays a minor role in the achievable resolution in far-field fluorescence microscopy. Super-resolution techniques enable fluorescence microscopy at nearly molecular resolution. Modern (super-resolution) microscopy methods rely strongly on software. Software tools are needed all the way from data acquisition, data storage, image reconstruction, restoration and alignment, to quantitative image analysis and image visualization. These tools play a key role in all aspects of microscopy today – and their importance in the coming years is certainly going to increase, when microscopy little-by-little transitions from single cells into more complex and even living model systems. In this thesis, a series of bioimage informatics software tools are introduced for STED super-resolution microscopy. Tomographic reconstruction software, coupled with a novel image acquisition method STED< is shown to enable axial (3D) super-resolution imaging in a standard 2D-STED microscope. Software tools are introduced for STED super-resolution correlative imaging with transmission electron microscopes or atomic force microscopes. A novel method for automatically ranking image quality within microscope image datasets is introduced, and it is utilized to for example select the best images in a STED microscope image dataset.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intermediate filaments are part of the cytoskeleton and nucleoskeleton; they provide cells with structure and have important roles in cell signalling. The IFs are a large protein family with more than 70 members; each tightly regulated and expressed in a cell type-specific manner. Although the IFs have been known and studied for decades, our knowledge about their specific functions is still limited, despite the fact that mutations in IF genes cause numerous severe human diseases. In this work, three IF proteins are examined more closely; the nuclear lamin A/C and the cytoplasmic nestin and vimentin. In particular the regulation of lamin A/C dynamics, the role of nestin in muscle and body homeostasis as well as the functions and evolutionary aspects of vimentin are investigated. Together this data highlights some less well understood functions of these IFs. We used mass-spectrometry to identify inter-phase specific phosphorylation sites on lamin A. With the use of genetically engineered lamin A protein in combination with high resolution microscopy and biochemical methods we discovered novel roles for this phosphorylation in regulation of lamin dynamics. More specifically, our data suggests that the phosphorylation of certain amino acids in lamin A determines the localization and dynamics of the protein. In addition, we present results demonstrating that lamin A regulates Cdk5-activity. In the second study we use mice lacking nestin to gain more knowledge of this seldom studied protein. Our results show that nestin is essential for muscle regeneration; mice lacking nestin recover more slowly from muscle injury and show signs of spontaneous muscle regeneration, indicating that their muscles are more sensitive to stresses and injury. The absence of nestin also leads to decreased over-all muscle mass and slower body growth. Furthermore, nestin has a role in controlling testicle homeostasis as nestin-/- male mice show a greater variation in testicle size. The common fruit fly Drosophila melanogaster lacks cytoplasmic IFs as most insects do. By creating a fly that expresses human vimentin we establish a new research platform for vimentin studies, as well as provide a new tool for the studies of IF evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this doctoral thesis, a tomographic STED microscopy technique for 3D super-resolution imaging was developed and utilized to observebone remodeling processes. To improve upon existing methods, wehave used a tomographic approach using a commercially available stimulated emission depletion (STED) microscope. A certain region of interest (ROI) was observed at two oblique angles: one at a standard inverted configuration from below (bottom view) and another from the side (side view) via a micro-mirror positioned close to the ROI. The two viewing angles were reconstructed into a final tomogram. The technique, named as tomographic STED microscopy, was able to achieve an axial resolution of approximately 70 nm on microtubule structures in a fixed biological specimen. High resolution imaging of osteoclasts (OCs) that are actively resorbing bone was achieved by creating an optically transparent coating on a microscope coverglass that imitates a fractured bone surface. 2D super-resolution STED microscopy on the bone layer showed approximately 60 nm of lateral resolution on a resorption associated organelle allowing these structures to be imaged with super-resolution microscopy for the first time. The developed tomographic STED microscopy technique was further applied to study resorption mechanisms of OCs cultured on the bone coating. The technique revealed actin cytoskeleton with specific structures, comet-tails, some of which were facing upwards and some others were facing downwards. This, in our opinion, indicated that during bone resorption, an involvement of the actin cytoskeleton in vesicular exocytosis and endocytosis is present. The application of tomographic STED microscopy in bone biology demonstrated that 3D super-resolution techniques can provide new insights into biological 3D nano-structures that are beyond the diffraction-limit when the optical constraints of super-resolution imaging are carefully taken into account.