4 resultados para Heterostructures
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
In the present work are reported investigations of structural, magnetic and electronic properties of GaAs/Ga1-xInxAs/GaAs quantum wells (QW) having a 0.5 - 1.8 monolayer thick Mn layer, separated from the quantum well by a 3 nm thick spacer. The structure of the samples is analyzed in details by photoluminescence and high-resolution X-ray difractometry and reflectometry, confirming that Mn atoms are practically absent from the QW. Transport properties and crystal structure are analyzed for the first time for this type of QW structures with so high mobility. Observedconductivity and the Hall effect in quantizing magnetic fields in wide temperature range, defined by transport of holes in the quantum well, demonstrate properties inherent to ferromagnetic systems with spin polarization of charge carriersin the QW. Investigation of the Shubnikov ¿ de Haas and the Hall effects gave the possibility to estimate the energy band parameters such as cyclotron mass andFermi level and calculate concentrations and mobilities of holes and show the high-quality of structures. Magnetic ordering is confirmed by the existence of the anomalous Hall effect.
Resumo:
The thesis is devoted to a theoretical study of resonant tunneling phenomena in semiconductor heterostructures and nanostructures. It considers several problems relevant to modern solid state physics. Namely these are tunneling between 2D electron layers with spin-orbit interaction, tunnel injection into molecular solid material, resonant tunnel coupling of a bound state with continuum and resonant indirect exchange interaction mediated by a remote conducting channel. A manifestation of spin-orbit interaction in the tunneling between two 2D electron layers is considered. General expression is obtained for the tunneling current with account of Rashba and Dresselhaus types of spin-orbit interaction and elastic scattering. It is demonstrated that the tunneling conductance is very sensitive to relation between Rashba and Dresselhaus contributions and opens possibility to determine the spin-orbit interaction parameters and electron quantum lifetime in direct tunneling experiments with no external magnetic field applied. A microscopic mechanism of hole injection from metallic electrode into organic molecular solid (OMS) in high electric field is proposed for the case when the molecules ionization energy exceeds work function of the metal. It is shown that the main contribution to the injection current comes from direct isoenergetic transitions from localized states in OMS to empty states in the metal. Strong dependence of the injection current on applied voltage originates from variation of the number of empty states available in the metal rather than from distortion of the interface barrier. A theory of tunnel coupling between an impurity bound state and the 2D delocalized states in the quantum well (QW) is developed. The problem is formulated in terms of Anderson-Fano model as configuration interaction between the carrier bound state at the impurity and the continuum of delocalized states in the QW. An effect of this interaction on the interband optical transitions in the QW is analyzed. The results are discussed regarding the series of experiments on the GaAs structures with a -Mn layer. A new mechanism of ferromagnetism in diluted magnetic semiconductor heterosructures is considered, namely the resonant enhancement of indirect exchange interaction between paramagnetic centers via a spatially separated conducting channel. The underlying physical model is similar to the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction; however, an important difference relevant to the low-dimensional structures is a resonant hybridization of a bound state at the paramagnetic ion with the continuum of delocalized states in the conducting channel. An approach is developed, which unlike RKKY is not based on the perturbation theory and demonstrates that the resonant hybridization leads to a strong enhancement of the indirect exchange. This finding is discussed in the context of the known experimental data supporting the phenomenon.
Resumo:
This work devotes to the theoretical investigations of spin-electromagnetic waves (SEW) propagating in a thin-film multiferroic structures that were composed of a slot-line and structures with several ferrite films. In contrast to earlier works, the spin-electromagnetic waves in the investigated structures are originated from two different electrodynamics coupling. The first one is coupling of the electromagnetic wave localized mainly in the slot-line with the spin wave excited mostly in the ferrite film. The second one is coupling of two spin waves in the different ferrite films separated by a thin ferroelectric film. For theoretical analysis of SEWs propagation in such kind of structures theories of their eigen-wave spectra were developed. Spectra of SEW in the investigated structures were calculated and analyzed. The range of electric and magnetic tunability of dispersion characteristic were investigated. Spectra of SEW in the investigated multiferroic structures are used for investigation of transfer function of periodic structures.
Resumo:
This thesis is devoted to growth and investigations of Mn-doped InSb and II-IV-As2 semiconductors, including Cd1-xZnxGeAs2:Mn, ZnSiAs2:Mn bulk crystals, ZnSiAs2:Mn/Si heterostructures. Bulk crystals were grown by direct melting of starting components followed by fast cooling. Mn-doped ZnSiAs2/Si heterostructures were grown by vacuum-thermal deposition of ZnAs2 and Mn layers on Si substrates followed by annealing. The compositional and structural properties of samples were investigated by different methods. The samples consist of micro- and nano- sizes clusters of an additional ferromagnetic Mn-X phases (X = Sb or As). Influence of magnetic precipitations on magnetic and electrical properties of the investigated materials was examined. With relatively high Mn concentration the main contribution to magnetization of samples is by MnSb or MnAs clusters. These clusters are responsible for high temperature behavior of magnetization and relatively high Curie temperature: up to 350 K for Mn-doped II-IV-As2 and about 600 K for InMnSb. The low-field magnetic properties of Mn-doped II-IV-As2 semiconductors and ZnSiAs2:Mn/Si heterostructures are connected to the nanosize MnAs particles. Also influence of nanosized MnSb clusters on low-field magnetic properties of InMnSb have been observed. The contribution of paramagnetic phase to magnetization rises at low temperatures or in samples with low Mn concentration. Source of this contribution is not only isolated Mn ions, but also small complexes, mainly dimmers and trimmers formed by Mn ions, substituting cation positions in crystal lattice. Resistivity, magnetoresistance and Hall resistivity properties in bulk Mn-doped II-IV-As2 and InSb crystals was analyzed. The interaction between delocalized holes and 3d shells of the Mn ions together with giant Zeeman splitting near the cluster interface are respond for negative magnetoresistance. Additionally to high temperature critical pointthe low-temperature ferromagnetic transition was observed Anomalous Hall effect was observed in Mn doped samples and analyzed for InMnSb. It was found that MnX clusters influence significantly on magnetic scattering of carriers.