3 resultados para Health Sciences, Public Health|Health Sciences, Epidemiology|Health Sciences, Oncology

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Internationally, Finland has been among the most respected countries during several decades in terms of public health. WHO has had the most significant influence on Finnish health policy and the relationship has traditionally been warm. However, the situation has slightly changed in the last 10-20 years. The objectives of Finnish national health policy have been to secure the best possible health for the population and to minimize disparities in health between different population groups. Nevertheless, although the state of public health and welfare has steadily improved, the socioeconomic disparities in health have increased. This qualitative case study will demonstrate why health is political and why health matters. It will also present some recommendations for research topics and administrative reforms. It will be argued that lack of political interest in health policy leads to absence of health policy visions and political commitment, which can be disastrous for public health. This study will investigate how Finnish health policy is defined and organised, and it will also shed light on Finnish health policy formation processes and actors. Health policy is understood as a broader societal construct covering the domains of different ministries, not just Ministry of Social Affairs and Health (MSAH). The influences of economic recession of the 1990s, state subsidy reform in 1993, globalisation and the European Union will be addressed, as well. There is not much earlier Finnish research done on health policy from political science viewpoint. Therefore, this study is interdisciplinary and combines political science with administrative science, contemporary history and health policy research with a hint of epidemiology. As a method, literature review, semi-structured interviews and policy analysi will be utilised. Institutionalism, policy transfer, and corporatism are understood as the theoretical framework. According to the study, there are two health policies in Finland: the official health policy and health policy generated by industry, media and various interest organisations. The complex relationships between the Government and municipalities, and on the other hand, the MSAH and National Institute for Health and Welfare (THL) seemed significant in terms of Finnish health policy coordination. The study also showed that the Investigated case, Health 2015, does not fulfil all necessary criteria for a successful public health programme. There were also several features both in Health 2015 and Finnish health policy, which can be interpreted in NPM framework and seen having NPM influences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is an increasing demand for individualized, genotype-based health advice. The general population-based dietary recommendations do not always motivate people to change their life-style, and partly following this, cardiovascular diseases (CVD) are a major cause of death in worldwide. Using genotype-based nutrition and health information (e.g. nutrigenetics) in health education is a relatively new approach, although genetic variation is known to cause individual differences in response to dietary factors. Response to changes in dietary fat quality varies, for example, among different APOE genotypes. Research in this field is challenging, because several non-modifiable (genetic, age, sex) and modifiable (e.g. lifestyle, dietary, physical activity) factors together and with interaction affect the risk of life-style related diseases (e.g. CVD). The other challenge is the psychological factors (e.g. anxiety, threat, stress, motivation, attitude), which also have an effect on health behavior. The genotype-based information is always a very sensitive topic, because it can also cause some negative consequences and feelings (e.g. depression, increased anxiety). The aim of this series of studies was firstly to study how individual, genotype-based health information affects an individual’s health form three aspects, and secondly whether this could be one method in the future to prevent lifestyle-related diseases, such as CVD. The first study concentrated on the psychological effects; the focus of the second study was on health behavior effects, and the third study concentrated on clinical effects. In the fourth study of this series, the focus was on all these three aspects and their associations with each other. The genetic risk and health information was the APOE gene and its effects on CVD. To study the effect of APOE genotype-based health information in prevention of CVD, a total of 151 volunteers attended the baseline assessments (T0), of which 122 healthy adults (aged 20 – 67 y) passed the inclusion criteria and started the one-year intervention. The participants (n = 122) were randomized into a control group (n = 61) and an intervention group (n = 61). There were 21 participants in the intervention Ɛ4+ group (including APOE genotypes 3/4 and 4/4) and 40 participants in the intervention Ɛ4- group (including APOE genotypes 2/3 and 3/3). The control group included 61 participants (including APOE genotypes 3/4, 4/4, 2/3, 3/3 and 2/2). The baseline (T0) and follow-up assessments (T1, T2, T3) included detailed measurements of psychological (threat and anxiety experience, stage of change), and behavioral (dietary fat quality, consumption of vegetables, - high fat/sugar foods and –alcohol, physical activity and health and taste attitudes) and clinical factors (total-, LDL- HDL cholesterol, triglycerides, blood pressure, blood glucose (0h and 2h), body mass index, waist circumference and body fat percentage). During the intervention six different communication sessions (lectures on healthy lifestyle and nutrigenomics, health messages by mail, and personal discussion with the doctor) were arranged. The intervention groups (Ɛ4+ and Ɛ4-) received their APOE genotype information and health message at the beginning of the intervention. The control group received their APOE genotype information after the intervention. For the analyses in this dissertation, the results for 106/107 participants were analyzed. In the intervention, there were 16 participants in the high-risk (Ɛ4+) group and 35 in the low-risk (Ɛ4-) group. The control group had 55 participants in studies III-IV and 56 participants in studies I-II. The intervention had both short-term (≤ 6 months) and long-term (12 months) effects on health behavior and clinical factors. The short-term effects were found in dietary fat quality and waist circumference. Dietary fat quality improved more in the Ɛ4+ group than the Ɛ4- and the control groups as the personal, genotype-based health information and waist circumference lowered more in the Ɛ4+ group compared with the control group. Both these changes differed significantly between the Ɛ4+ and control groups (p<0.05). A long-term effect was found in triglyceride values (p<0.05), which lowered more in Ɛ4+ compared with the control group during the intervention. Short-term effects were also found in the threat experience, which increased mostly in the Ɛ4+ group after the genetic feedback (p<0.05), but it decreased after 12 months, although remaining at a higher level compared to the baseline (T0). In addition, Study IV found that changes in the psychological factors (anxiety and threat experience, motivation), health and taste attitudes, and health behaviors (dietary, alcohol consumption, and physical activity) did not directly explain the changes in triglyceride values and waist circumference. However, change caused by a threat experience may have affected the change in triglycerides through total- and HDL cholesterol. In conclusion, this dissertation study has given some indications that individual, genotypebased health information could be one potential option in the future to prevent lifestyle-related diseases in public health care. The results of this study imply that personal genetic information, based on APOE, may have positive effects on dietary fat quality and some cardiovascular risk markers (e.g., improvement in triglyceride values and waist circumference). This study also suggests that psychological factors (e.g. anxiety and threat experience) may not be an obstacle for healthy people to use genotype-based health information to promote healthy lifestyles. However, even in the case of very personal health information, in order to achieve a permanent health behavior change, it is important to include attitudes and other psychological factors (e.g. motivation), as well as intensive repetition and a longer intervention duration. This research will serve as a basis for future studies and its information can be used to develop targeted interventions, including health information based on genotyping that would aim at preventing lifestyle diseases. People’s interest in personalized health advices has increased, while also the costs of genetic screening have decreased. Therefore, generally speaking, it can be assumed that genetic screening as a part of the prevention of lifestyle-related diseases may become more common in the future. In consequence, more research is required about how to make genetic screening a practical tool in public health care, and how to efficiently achieve long-term changes.