20 resultados para Head space-solid phase micro extraction

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chlorophenols have been classified as possible carcinogens for humans. Chlorophenols have been used as pesticides and wood preservatives. In Finland, during 1930 – 1980s, saw mills used KY-5 wood preservative that contained 2,4,6-TCP, 2,3,4,6-TeCP and PCP. Especially in Finland chlorophenols have entered the environment by leaking from contaminated grounds of old saw mills. Although chlorophenol concentrations found in environment do not cause acute concern, long term exposure can increase the risk of cancer. SPME is relatively cheap and simple sampling method, in which the sample extraction and concentration are performed in a single step. Solvents are not required in SPME. IMS is based on the detection of sample ion drift times. Based on the drift times, reduced mobilities are calculated, which are comparable despite the measurement conditions. SPME-IMS coupling has not been used earlier in the determination of chlorophenols from water samples. The scope of this work was to study, if SPME-IMS system is suitable for detecting chloro-phenols from water samples. The aim was to determine the most optimal extraction condi-tions, which were then applied to real water samples. Following detection limits were deter-mined: 2,4,6-TCP: 0.33 mg/l; 2,3,4,6-TeCP: 0.63 mg/l and PCP: 1.63 mg/l. Detection limits were high compared to the highest possible chlorophenol concentration that is allowed in Finnish drinking water, 10 μg/l. Detected concentrations from water sample differed from verified concentrations in the case of 2,3,4,6-TeCP by 4.6 % and in the case of 2,4,6-TCP by 48.4 %. Based on the results it can be said that SPME-IMS setup is suitable for preliminary analysis of mg/l chlorophenol concentrations from water samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Streptavidin, a tetrameric protein secreted by Streptomyces avidinii, binds tightly to a small growth factor biotin. One of the numerous applications of this high-affinity system comprises the streptavidin-coated surfaces of bioanalytical assays which serve as universal binders for straightforward immobilization of any biotinylated molecule. Proteins can be immobilized with a lower risk of denaturation using streptavidin-biotin technology in contrast to direct passive adsorption. The purpose of this study was to characterize the properties and effects of streptavidin-coated binding surfaces on the performance of solid-phase immunoassays and to investigate the contributions of surface modifications. Various characterization tools and methods established in the study enabled the convenient monitoring and binding capacity determination of streptavidin-coated surfaces. The schematic modeling of the monolayer surface and the quantification of adsorbed streptavidin disclosed the possibilities and the limits of passive adsorption. The defined yield of 250 ng/cm2 represented approximately 65 % coverage compared with a modelled complete monolayer, which is consistent with theoretical surface models. Modifications such as polymerization and chemical activation of streptavidin resulted in a close to 10-fold increase in the biotin-binding densities of the surface compared with the regular streptavidin coating. In addition, the stability of the surface against leaching was improved by chemical modification. The increased binding densities and capacities enabled wider high-end dynamic ranges in the solid-phase immunoassays, especially when using the fragments of the capture antibodies instead of intact antibodies for the binding of the antigen. The binding capacity of the streptavidin surface was not, by definition, predictive of the low-end performance of the immunoassays nor the assay sensitivity. Other features such as non-specific binding, variation and leaching turned out to be more relevant. The immunoassays that use a direct surface readout measurement of time-resolved fluorescence from a washed surface are dependent on the density of the labeled antibodies in a defined area on the surface. The binding surface was condensed into a spot by coating streptavidin in liquid droplets into special microtiter wells holding a small circular indentation at the bottom. The condensed binding area enabled a denser packing of the labeled antibodies on the surface. This resulted in a 5 - 6-fold increase in the signal-to-background ratios and an equivalent improvement in the detection limits of the solid-phase immunoassays. This work proved that the properties of the streptavidin-coated surfaces can be modified and that the defined properties of the streptavidin-based immunocapture surfaces contribute to the performance of heterogeneous immunoassays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several bioaffinity assays are based on the detection of an analyte which is bound on a solid substrate via biochemical interaction. These so called solid phase assays are based on the adhesion of the primary binding partner on a solid surface, which then binds the analyte to be detected. In this thesis work a novel solid phase based assay technology, known as spot technology, was developed. The spot technology is based on combination of high-capacity solid phases, concentrated in a spot format, utilising modified streptavidin molecules and recombinant antibody fragments. The reduction of the solid phase binding surface to a size of a spot enabled denser binding of the target molecules, providing improved signal intensities and signal-to-background ratio when applied in different solid phase immunoassays. Streptavidin-biotin interactions are commonly utilised in numerous different bioaffinity assays and the ultimate nature of streptavidin to bind biotin is among the strongest non-covalent interaction reported between two biomolecules. In this study native core streptavidin was chemically modified to provide polymerised streptavidin molecules with altered adsorption properties. These streptavidin conjugates, when coated onto polystyrene surface, provided enhanced biotin binding capacity and surface stability when compared to a reference coating constructed with native streptavidin. Furthermore, the combination of chemically modified streptavidin, sitespecifically biotinylated antibody fragments and the spot coating technology provided highly dense solid phase coating with improved binding properties. The performance of the spot assay technology was further demonstrated in different immunoassay configurations. Human thyroid stimulating hormone (TSH) and human cardiac troponin I (cTnI) were used as model analytes to show the applicability of the highly sensitive spot-based solid-phase immunoassay for detection of very low levels of analytes. It was demonstrated that the spot technology provided an assay concept with enhanced sensitivity and short turn-around times, characteristics that are highly suitable for point-of-care applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents an approach for formulating and validating a space averaged drag model for coarse mesh simulations of gas-solid flows in fluidized beds using the two-fluid model. Proper modeling for fluid dynamics is central in understanding any industrial multiphase flow. The gas-solid flows in fluidized beds are heterogeneous and usually simulated with the Eulerian description of phases. Such a description requires the usage of fine meshes and small time steps for the proper prediction of its hydrodynamics. Such constraint on the mesh and time step size results in a large number of control volumes and long computational times which are unaffordable for simulations of large scale fluidized beds. If proper closure models are not included, coarse mesh simulations for fluidized beds do not give reasonable results. The coarse mesh simulation fails to resolve the mesoscale structures and results in uniform solids concentration profiles. For a circulating fluidized bed riser, such predicted profiles result in a higher drag force between the gas and solid phase and also overestimated solids mass flux at the outlet. Thus, there is a need to formulate the closure correlations which can accurately predict the hydrodynamics using coarse meshes. This thesis uses the space averaging modeling approach in the formulation of closure models for coarse mesh simulations of the gas-solid flow in fluidized beds using Geldart group B particles. In the analysis of formulating the closure correlation for space averaged drag model, the main parameters for the modeling were found to be the averaging size, solid volume fraction, and distance from the wall. The closure model for the gas-solid drag force was formulated and validated for coarse mesh simulations of the riser, which showed the verification of this modeling approach. Coarse mesh simulations using the corrected drag model resulted in lowered values of solids mass flux. Such an approach is a promising tool in the formulation of appropriate closure models which can be used in coarse mesh simulations of large scale fluidized beds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Separation of carboxylic acids from aqueous streams is an important part of their manufacturing process. The aqueous solutions are usually dilute containing less than 10 % acids. Separation by distillation is difficult as the boiling points of acids are only marginally higher than that of water. Because of this distillation is not only difficult but also expensive due to the evaporation of large amounts of water. Carboxylic acids have traditionally been precipitated as calcium salts. The yields of these processes are usually relatively low and the chemical costs high. Especially the decomposition of calcium salts with sulfuric acid produces large amounts of calcium sulfate sludge. Solvent extraction has been studied as an alternative method for recovery of carboxylic acids. Solvent extraction is based on mixing of two immiscible liquids and the transfer of the wanted components form one liquid to another due to equilibrium difference. In the case of carboxylic acids, the acids are transferred from aqueous phase to organic solvent due to physical and chemical interactions. The acids and the extractant form complexes which are soluble in the organic phase. The extraction efficiency is affected by many factors, for instance initial acid concentration, type and concentration of the extractant, pH, temperature and extraction time. In this paper, the effects of initial acid concentration, type of extractant and temperature on extraction efficiency were studied. As carboxylic acids are usually the products of the processes, they are wanted to be recovered. Hence the acids have to be removed from the organic phase after the extraction. The removal of acids from the organic phase also regenerates the extractant which can be then recycled in the process. The regeneration of the extractant was studied by back-extracting i.e. stripping the acids form the organic solution into diluent sodium hydroxide solution. In the solvent regeneration, the regenerability of different extractants and the effect of initial acid concentration and temperature were studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ion mobility spectrometry (IMS) is a straightforward, low cost method for fast and sensitive determination of organic and inorganic analytes. Originally this portable technique was applied to the determination of gas phase compounds in security and military use. Nowadays, IMS has received increasing attention in environmental and biological analysis, and in food quality determination. This thesis consists of literature review of suitable sample preparation and introduction methods for liquid matrices applicable to IMS from its early development stages to date. Thermal desorption, solid phase microextraction (SPME) and membrane extraction were examined in experimental investigations of hazardous aquatic pollutants and potential pollutants. Also the effect of different natural waters on the extraction efficiency was studied, and the utilised IMS data processing methods are discussed. Parameters such as extraction and desorption temperatures, extraction time, SPME fibre depth, SPME fibre type and salt addition were examined for the studied sample preparation and introduction methods. The observed critical parameters were extracting material and temperature. The extraction methods showed time and cost effectiveness because sampling could be performed in single step procedures and from different natural water matrices within a few minutes. Based on these experimental and theoretical studies, the most suitable method to test in the automated monitoring system is membrane extraction. In future an IMS based early warning system for monitoring water pollutants could ensure the safe supply of drinking water. IMS can also be utilised for monitoring natural waters in cases of environmental leakage or chemical accidents. When combined with sophisticated sample introduction methods, IMS possesses the potential for both on-line and on-site identification of analytes in different water matrices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Consumers’ increasing awareness of healthiness and sustainability of food presents a great challenge to food industry to develop healthier, biologically active and sustainable food products. Bioactive peptides derived from food proteins are known to possess various biological activities. Among the activities, the most widely studied are antioxidant activities and angiotensin I converting enzyme (ACE) inhibitory activity related to blood pressure regulation and antihypertensive effects. Meanwhile, vast amounts of byproducts with high protein content are produced in food industry, for example potato and rapeseed industries. The utilization of these by-products could be enhanced by using them as a raw material for bioactive peptides. The objective of the present study was to investigate the production of bioactive peptides with ACE inhibitory and antioxidant properties from rapeseed and potato proteins. Enzymatic hydrolysis and fermentation were utilized for peptide production, ultrafiltration and solid-phase extraction were used to concentrate the active peptides, the peptides were fractionated with liquid chromatographic processes, and the peptides with the highest ACE inhibitory capacities were putified and analyzed with Maldi-Tof/Tof to identify the active peptide sequences. The bioavailability of the ACE inhibitory peptides was elucidated with an in vitro digestion model and the antihypertensive effects in vivo of rapeseed peptide concentrates were investigated with a preventive premise in 2K1C rats. The results showed that rapeseed and potato proteins are rich sources of ACE inhibitory and antioxidant peptides. Enzymatic hydrolysis released the peptides effectively whereas fermentation produced lower activities.The native enzymes of potato were also able to release ACE inhibitory peptides from potato proteins without the addition of exogenous enzymes. The rapeseed peptide concentrate was capable of preventing the development of hypertension in vivo in 2K1C rats, but the quality of rapeseed meal used as raw material was found to affect considerably the antihypertensive effects and the composition of the peptide fraction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Perfluoratut alkyyliyhdisteet eli PFAS-yhdisteet ovat synteettisiä orgaanisia yhdisteitä, joissa on fluorattu hiiliketju. Hiilen ja fluorin väliset vahvat sidokset ovat muodostuneet ongelmaksi jätevedenpuhdistamoilla, sillä yhdisteet eivät hajoa puhdistamoilla käytössä olevilla vedenpuhdistusmenetelmillä. Yhdisteitä kertyy luontoon jätevesien mukana. Kandidaatintyössä on vertailtu yhdisteitä sisältävien vesien käsittelymenetelmiä parhaiten soveltuvan menetelmän löytämiseksi. Menetelmien kustannuksia tai soveltuvuutta vedenpuhdistamomittakaavan prosessiksi ei ole arvioitu. Lisäksi työssä on koottu yhdisteitä sisältävien jätevesien analysointiin sopivia analyysimenetelmiä. Soveltuvat puhdistus- ja analyysimenetelmät on esitelty uusien tieteellisten artikkelien pohjalta. Mahdollisia erotusmenetelmiä ovat membraanierotus ja sorptio. Membraaneista soveltuvimpia ovat nanosuodatus- ja käänteisosmoosimembraanit, joilla erottuvat jopa 0,0001 μm:n kokoiset partikkelit. PFAS-yhdisteet voidaan erottaa sorptiolla muun muassa aktiivihiileen. Yhdisteiden rakenne hajoaa nykyaikaisilla hapetusmenetelmillä ja polttamalla lietteen mukana. Hapettaminen permanganaatin avulla ei tuottanut hyvää tulosta, mutta fotokemiallisella hapetuksella ja alhaisen lämpötilan plasmatekniikalla (NTP) yhdisteiden rakenne hajosi lähes kokonaan. Fotokemiallinen hapetus onnistui erityisesti perfluorokarboksyylihapoilla, joiden rakenne hajosi jopa kolmessa tunnissa. Yleisimmin käytetty analyysimenetelmä on nestekromatografin ja massaspektrometrin yhdistelmä (LC-MS/MS) ja matriisivaikutus minimoidaan tyypillisesti kiinteäfaasiuutolla (SPE). Työssä esitellyistä käsittelymenetelmistä parhaiten soveltuva on NTP-menetelmä, koska sillä saatiin tutkimusten mukaan hajotettua yhdisteiden rakenne muita menetelmiä lyhyemmässä ajassa ja se soveltuu parhaiten kaikille PFAS-yhdisteille. NTP-menetelmässä ei tarvita katalyyttiä tai lisäkemikaaleja. Voimakkaana hapettimena toimivat epästabiilit hydroksyyliradikaalit, jotka syntyvät koronapurkauksen kautta. Koronapurkauksessa muodostuu myös otsonia ja lisäksi vapaa happi voi tehostaa hapettumista. Menetelmässä muodostuvien hajoamistuotteiden hallinta vaatii lisätutkimusta. Mahdollinen hallintakeino voisi olla esimerkiksi hapettumisessa vapautuvien fluoridi-ionien saostaminen. Muodostuvien hajoamistuotteiden toksisuutta voitaisiin tarkkailla biosensorilla.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Työssä tutkittiin korkean leimahduspisteen laimentimien vaikutusta uuton tehokkuuteen ja turvallisuuteen. Kirjallisuusosa sisältää katsauksen uuttolaitoksilla tapahtuneista suuronnettomuuksista, staattisen sähkön aiheuttamista vaaroista uuttolaitoksilla ja kaupallisesti saatavista laimentimista. Lisäksi kirjallisuusosassa tarkastellaan hiilivetyjen molekyylirakenteen vaikutusta niiden leimahduspisteeseen, haihtuvuuteen, viskositeettiin ja liuotinominaisuuksiin. Kokeellisessa osassa tutkittiin uuton tehokkuutta kuvaavia ominaisuuksia, joita olivat sekoituksen pisarakoko, faasien selkeytymisnopeus,uuton ja takaisinuuton kinetiikka, orgaanisen faasin viskositeetti ja tiheys. Uuttoliuosten turvallisuusominaisuuksia tutkittiin mittaamalla synteettisten uuttoliuosten ja laimentimien leimahduspisteitä sekä sähköisesti varattujen laimentimien relaksaatioaikoja. Korkean leimahduspisteen laimentimena käytettiin Orfom SX 11-laimenninta. Vertailukohteena käytettiin Shellsol D70- ja Escaid 100- laimentimia. Malliuuttona käytettiin kuparin uuttoa hydroksioksiimireagensilla happamasta sulfaattiliuoksesta. Kokeissa havaittiin, että korkean leimahduspisteen laimentimen viskositeetti oli huomattavasti suurempi kuin Shellsol D70- laimentimella. Korkea viskositeetti hidasti faasien selkeytymistä uutossa, mutta sillä ei ollut vaikutusta uuton kinetiikkaan tai sekoituksen aiheuttamaan pisarakokoon. Uuttoliuoksen reagenssipitoisuudella havaittiin olevan vaikutusta uuttoliuoksen leimahduspisteeseen, mutta uuttoliuoksen latausasteella ei havaittu olevan vaikutusta. Sähköisesti varattujen laimentimien varauksien relaksaatioajoissa oli hieman eroja, mutta relaksaatioajat olivat kaikilla laimentimilla liian pitkiä staattisen sähkön aiheuttaman vaaran poistamiseksi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this thesis was to produce information for the estimation of the flow balance of wood resin in mechanical pulping and to demonstrate the possibilities for improving the efficiency of deresination in practice. It was observed that chemical changes in wood resin take place only during peroxide bleaching, a significant amount of water dispersed wood resin is retained in the pulp mat during dewatering and the amount of wood resin in the solid phase of the process filtrates is very small. On the basis of this information there exist three parameters related to behaviour of wood resin that determine the flow balance in the process: 1. The liberation of wood resin to the pulp water phase 2. Theretention of water dispersed wood resin in dewatering 3. The proportion of wood resin degraded in the peroxide bleaching The effect of different factors on these parameters was evaluated with the help of laboratory studies and a literature survey. Also, information related to the values of these parameters in existing processes was obtained in mill measurements. With the help of this information, it was possible to evaluate the deresination efficiency and the effect of different factors on this efficiency in a pulping plant that produced low-freeness mechanical pulp. This evaluation showed that the wood resin content of mechanical pulp can be significantly decreased if there exists, in the process, a peroxide bleaching and subsequent washing stage. In the case of an optimal process configuration, as high as a 85 percent deresination efficiency seems to be possible with a water usage level of 8 m3/o.d.t.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of industrial crystallization is to obtain a crystalline product which has the desired crystal size distribution, mean crystal size, crystal shape, purity, polymorphic and pseudopolymorphic form. Effective control of the product quality requires an understanding of the thermodynamics of the crystallizing system and the effects of operation parameters on the crystalline product properties. Therefore, obtaining reliable in-line information about crystal properties and supersaturation, which is the driving force of crystallization, would be very advantageous. Advanced techniques, such asRaman spectroscopy, attenuated total reflection Fourier transform infrared (ATR FTIR) spectroscopy, and in-line imaging techniques, offer great potential for obtaining reliable information during crystallization, and thus giving a better understanding of the fundamental mechanisms (nucleation and crystal growth) involved. In the present work, the relative stability of anhydrate and dihydrate carbamazepine in mixed solvents containing water and ethanol were investigated. The kinetics of the solvent mediated phase transformation of the anhydrate to hydrate in the mixed solvents was studied using an in-line Raman immersion probe. The effects of the operation parameters in terms of solvent composition, temperature and the use of certain additives on the phase transformation kineticswere explored. Comparison of the off-line measured solute concentration and the solid-phase composition measured by in-line Raman spectroscopy allowedthe identification of the fundamental processes during the phase transformation. The effects of thermodynamic and kinetic factors on the anhydrate/hydrate phase of carbamazepine crystals during cooling crystallization were also investigated. The effect of certain additives on the batch cooling crystallization of potassium dihydrogen phosphate (KDP) wasinvestigated. The crystal growth rate of a certain crystal face was determined from images taken with an in-line video microscope. An in-line image processing method was developed to characterize the size and shape of thecrystals. An ATR FTIR and a laser reflection particle size analyzer were used to study the effects of cooling modes and seeding parameters onthe final crystal size distribution of an organic compound C15. Based on the obtained results, an operation condition was proposed which gives improved product property in terms of increased mean crystal size and narrowersize distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tässä tutkimuksessa kehitettiin prototyyppi betonielementin dimension mittaus järjestelmästä. Tämä järjestelmä mahdollistaa kolmiulotteisen kappaleen mittauksen. Tutkimuksessa kehitettiin myös stereonäköön perustuva kappaleen mittaus. Prototyyppiä testailin ja tulokset osoittautuivat luotettaviksi. Tutkimuksessa selvitetään ja vertaillaan myös muita lähestymistapoja ja olemassa olevia järjestelmiä kappaleen kolmiuloitteiseen mittaukseen, joita Suomalaiset yhtiöt käyttävät tällä alalla.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoparticles offer adjustable and expandable reactive surface area compared to the more traditional solid phase forms utilized in bioaffinity assays due to the high surface to-volume ratio. The versatility of nanoparticles is further improved by the ability to incorporate various molecular complexes such as luminophores into the core. Nanoparticle labels composed of polystyrene, silica, inorganic crystals doped with high number of luminophores, preferably lanthanide(III) complexes, are employed in bioaffinity assays. Other label species such as semiconductor crystals (quantum dots) or colloidal gold clusters are also utilized. The surface derivatization of such particles with biomolecules is crucial for the applicability to bioaffinity assays. The effectiveness of a coating is reliant on the biomolecule and particle surface characteristics and the selected coupling technique. The most critical aspects of the particle labels in bioaffinity assays are their size-dependent features. For polystyrene, silica and inorganic phosphor particles, these include the kinetics, specific activity and colloidal stability. For quantum dots and gold colloids, the spectral properties are also dependent on particle size. This study reports the utilization of europium(III)-chelate-embedded nanoparticle labels in the development of bioaffinity assays. The experimental covers both the heterogeneous and homogeneous assay formats elucidating the wide applicability of the nanoparticles. It was revealed that the employment of europium(III) nanoparticles in heterogeneous assays for viral antigens, adenovirus hexon and hepatitis B surface antigen (HBsAg), resulted in sensitivity improvement of 10-1000 fold compared to the reference methods. This improvement was attributed to the extreme specific activity and enhanced monovalent affinity of the nanoparticles conjugates. The applicability of europium(III)-chelate-doped nanoparticles to homogeneous assay formats were proved in two completely different experimental settings; assays based on immunological recognition or proteolytic activity. It was shown that in addition to small molecule acceptors, particulate acceptors may also be employed due to the high specific activity of the particles promoting proximity-induced reabsorptive energy transfer in addition to non-radiative energy transfer. The principle of proteolytic activity assay relied on a novel dual-step FRET concept, wherein the streptavidin-derivatized europium(III)-chelate-doped nanoparticles were used as donors for peptide substrates modified with biotin and terminal europium emission compliant primary acceptor and a secondary quencher acceptor. The recorded sensitized emission was proportional to the enzyme activity, and the assay response to various inhibitor doses was in agreement with those found in literature showing the feasibility of the technique. Experiments regarding the impact of donor particle size on the extent of direct donor fluorescence and reabsorptive excitation interference in a FRET-based application was conducted with differently sized europium(III)-chelate-doped nanoparticles. It was shown that the size effect was minimal

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel cantilever pressure sensor was developed in the Department of Physics at the University of Turku in order to solve the sensitivity problems which are encountered when condenser microphones are used in photoacoustic spectroscopy. The cantilever pressure sensor, combined with a laser interferometer for the measurement of the cantilever movements, proved to be highly sensitive. The original aim of this work was to integrate the sensor in a photoacoustic gas detector working in a differential measurement scheme. The integration was made successfully into three prototypes. In addition, the cantilever was also integrated in the photoacoustic FTIR measurement schemes of gas-, liquid-, and solid-phase samples. A theoretical model for the signal generation in each measurement scheme was created and the optimal celldesign discussed. The sensitivity and selectivity of the differential method were evaluated when a blackbody radiator and a mechanical chopper were used with CO2, CH4, CO, and C2H4 gases. The detection limits were in the sub-ppm level for all four gases with only a 1.3 second integration time and the cross interference was well below one percent for all gas combinations other than those between hydrocarbons. Sensitivity with other infrared sources was compared using ethylene as an example gas. In the comparison of sensitivity with different infrared sources the electrically modulated blackbody radiator gave a 35 times higher and the CO2-laser a 100 times lower detection limit than the blackbody radiator with a mechanical chopper. As a conclusion, the differential system is well suited to rapid single gas measurements. Gas-phase photoacoustic FTIR spectroscopy gives the best performance, when several components have to be analyzed simultaneously from multicomponent samples. Multicomponent measurements were demonstrated with a sample that contained different concentrations of CO2, H2O, CO, and four different hydrocarbons. It required an approximately 10 times longer measurement time to achieve the same detection limit for a single gas as with the differential system. The properties of the photoacoustic FTIR spectroscopy were also compared to conventional transmission FTIR spectroscopy by simulations. Solid- and liquid-phase photoacoustic FTIR spectroscopy has several advantages compared to other techniques and therefore it also has a great variety of applications. A comparison of the signal-to-noise ratio between photoacoustic cells with a cantilever microphone and a condenser microphone was done with standard carbon black, polyethene, and sunflower oil samples. The cell with the cantilever microphone proved to have a 5-10 times higher signal-to-noise ratio than the reference detector, depending on the sample. Cantilever enhanced photoacoustics will be an effective tool for gas detection and analysis of solid- and liquid-phase samples. The preliminary prototypes gave good results in all three measurement schemes that were studied. According to simulations, there are possibilities for further enhancement of the sensitivity, as well as other properties, of each system.