22 resultados para Greedy String Tiling
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Soitinnus: Viulut (2), alttoviulu, sello.
Resumo:
Digitoitu 16. 10. 2008.
Resumo:
Soitinnus: jousiorkesteri.
Resumo:
Työn tarkoituksena on tutkia pinon ylikirjoitukseen perustuvien hyökkäysten toimintaa ja osoittaa kokeellisesti nykyisten suojaustekniikoiden olevan riittämättömiä. Tutkimus suoritetaan testaamalla miten valitut tietoturvatuotteet toimivat eri testitilanteissa. Testatut tuotteet ovat Openwall, PaX, Libsafe 2.0 ja Immunix 6.2. Testaus suoritetaan pääasiassa RedHat 7.0 ympäristössä testiohjelman avulla. Testeissä mitataan sekä tuotteiden kyky havaita hyökkäyksiä että niiden nopeusvaikutukset. Myös erityyppisten hyökkäysten ja niitä vastaan kehitettyjen metodien toimintaperiaatteet esitellään seikkaperäisesti ja havainnollistetaan yksinkertaistetuilla esimerkeillä. Esitellyt tekniikat sisältävät puskurin ylivuodot, laittomat muotoiluparametrit, loppumerkittömät merkkijonot ja taulukoiden ylivuodot. Testit osoittavat, etteivät valitut tuotteet estä kaikkia hyökkäyksiä, joten lopuksi perehdytään myös vahinkojen minimointiin onnistuneiden hyökkäysten varalta.
Resumo:
Soitinnus: Viulut (2), alttoviulu, sello.
Resumo:
The Hollywood String Quartet: Slatkin, Felix, viulu ; Shure, Paul, viulu ; Robyn, Paul, alttoviulu ; Aller, Eleanor, sello.
Resumo:
Soitinnus: Viulut (2), alttoviulu, sello.
Resumo:
Cellular automata are models for massively parallel computation. A cellular automaton consists of cells which are arranged in some kind of regular lattice and a local update rule which updates the state of each cell according to the states of the cell's neighbors on each step of the computation. This work focuses on reversible one-dimensional cellular automata in which the cells are arranged in a two-way in_nite line and the computation is reversible, that is, the previous states of the cells can be derived from the current ones. In this work it is shown that several properties of reversible one-dimensional cellular automata are algorithmically undecidable, that is, there exists no algorithm that would tell whether a given cellular automaton has the property or not. It is shown that the tiling problem of Wang tiles remains undecidable even in some very restricted special cases. It follows that it is undecidable whether some given states will always appear in computations by the given cellular automaton. It also follows that a weaker form of expansivity, which is a concept of dynamical systems, is an undecidable property for reversible one-dimensional cellular automata. It is shown that several properties of dynamical systems are undecidable for reversible one-dimensional cellular automata. It shown that sensitivity to initial conditions and topological mixing are undecidable properties. Furthermore, non-sensitive and mixing cellular automata are recursively inseparable. It follows that also chaotic behavior is an undecidable property for reversible one-dimensional cellular automata.
Resumo:
Tämä tutkielma kuuluu merkkijonoalgoritmiikan piiriin. Merkkijono S on merkkijonojen X[1..m] ja Y[1..n] yhteinen alijono, mikäli se voidaan muodostaa poistamalla X:stä 0..m ja Y:stä 0..n kappaletta merkkejä mielivaltaisista paikoista. Jos yksikään X:n ja Y:n yhteinen alijono ei ole S:ää pidempi, sanotaan, että S on X:n ja Y:n pisin yhteinen alijono (lyh. PYA). Tässä työssä keskitytään kahden merkkijonon PYAn ratkaisemiseen, mutta ongelma on yleistettävissä myös useammalle jonolle. PYA-ongelmalle on sovelluskohteita – paitsi tietojenkäsittelytieteen niin myös bioinformatiikan osa-alueilla. Tunnetuimpia niistä ovat tekstin ja kuvien tiivistäminen, tiedostojen versionhallinta, hahmontunnistus sekä DNA- ja proteiiniketjujen rakennetta vertaileva tutkimus. Ongelman ratkaisemisen tekee hankalaksi ratkaisualgoritmien riippuvuus syötejonojen useista eri parametreista. Näitä ovat syötejonojen pituuden lisäksi mm. syöttöaakkoston koko, syötteiden merkkijakauma, PYAn suhteellinen osuus lyhyemmän syötejonon pituudesta ja täsmäävien merkkiparien lukumäärä. Täten on vaikeaa kehittää algoritmia, joka toimisi tehokkaasti kaikille ongelman esiintymille. Tutkielman on määrä toimia yhtäältä käsikirjana, jossa esitellään ongelman peruskäsitteiden kuvauksen jälkeen jo aikaisemmin kehitettyjä tarkkoja PYAalgoritmeja. Niiden tarkastelu on ryhmitelty algoritmin toimintamallin mukaan joko rivi, korkeuskäyrä tai diagonaali kerrallaan sekä monisuuntaisesti prosessoiviin. Tarkkojen menetelmien lisäksi esitellään PYAn pituuden ylä- tai alarajan laskevia heuristisia menetelmiä, joiden laskemia tuloksia voidaan hyödyntää joko sellaisinaan tai ohjaamaan tarkan algoritmin suoritusta. Tämä osuus perustuu tutkimusryhmämme julkaisemiin artikkeleihin. Niissä käsitellään ensimmäistä kertaa heuristiikoilla tehostettuja tarkkoja menetelmiä. Toisaalta työ sisältää laajahkon empiirisen tutkimusosuuden, jonka tavoitteena on ollut tehostaa olemassa olevien tarkkojen algoritmien ajoaikaa ja muistinkäyttöä. Kyseiseen tavoitteeseen on pyritty ohjelmointiteknisesti esittelemällä algoritmien toimintamallia hyvin tukevia tietorakenteita ja rajoittamalla algoritmien suorittamaa tuloksetonta laskentaa parantamalla niiden kykyä havainnoida suorituksen aikana saavutettuja välituloksia ja hyödyntää niitä. Tutkielman johtopäätöksinä voidaan yleisesti todeta tarkkojen PYA-algoritmien heuristisen esiprosessoinnin lähes systemaattisesti pienentävän niiden suoritusaikaa ja erityisesti muistintarvetta. Lisäksi algoritmin käyttämällä tietorakenteella on ratkaiseva vaikutus laskennan tehokkuuteen: mitä paikallisempia haku- ja päivitysoperaatiot ovat, sitä tehokkaampaa algoritmin suorittama laskenta on.