5 resultados para Genetic Regulatory Networks
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Biology is turning into an information science. The science of systems biology seeks to understand the genetic networks that govern organism development and functions. In this study the chicken was used as a model organism in the study of B cell regulatory factors. These studies open new avenues for plasma cell research by connecting the down regulation of the B cell gene expression program directly to the initiation of plasma cell differentiation. The unique advantages of the DT40 avian B cell model system, specifically its high homologous recombination rate, were utilized to study gene regulation in Pax5 knock out cell lines and to gain new insights into the B cell to plasma cell transitions that underlie the secretion of antibodies as part of the adaptive immune response. The Pax5 transcription factor is central to the commitment, development and maintenance of the B cell phenotype. Mice lacking the Pax5 gene have an arrest in development at the pro-B lymphocyte stage while DT40 cells have been derived from cells at a more mature stage of development. The DT40 Pax5-/- cells exhibited gene expression similarities with primary chicken plasma cells. The expression of the plasma cell transcription factors Blimp-1 and XBP-1 were significantly upregulated while the expression of the germinal centre factor BCL6 was diminished in Pax5-/- cells, and this alteration was normalized by Pax5 re-introduction. The Pax5-deficient cells further manifested substantially elevated secretion of IgM into the supernatant, another characteristic of plasma cells. These results for the first time indicated that the downregulation of the Pax5 gene in B cells promotes plasma cell differentiation. Cross-species meta-analysis of chicken and mouse Pax5 gene knockout studies uncovers genes and pathways whose regulatory relationship to Pax5 has remained unchanged for over 300 million years. Restriction of the hematopoietic stem cell fate to produce T, B and NK cell lineages is dependent on the Ikaros and its molecular partners, the closely related Helios and Aiolos. Ikaros family members are zinc finger proteins which act as transcriptional repressors while helping to activate lymphoid genes. Helios in mice is expressed from the hematopoietic stem cell level onwards, although later in development its expression seems to predominate in the T cell lineage. This study establishes the emergence and sequence of the chicken Ikaros family members. Helios expression in the bursa of Fabricius, germinal centres and B cell lines suggested a role for Helios in the avian B-cell lineage, too. Phylogenetic studies of the Ikaros family connect the expansion of the Ikaros family, and thus possibly the emergence of the adaptive immune system, with the second round of genome duplications originally proposed by Ohno. Paralogs that have arisen as a result of genome-wide duplications are sometimes termed ohnologs – Ikaros family proteins appear to fit that definition. This study highlighted the opportunities afforded by the genome sequencing efforts and somatic cell reverse genetics approaches using the DT40 cell line. The DT40 cell line and the avian model system promise to remain a fruitful model for mechanistic insight in the post-genomic era as well.
Resumo:
Th2-solujen erilaistumista ohjaavat säätelyverkostot ja niiden tutkiminen proteomiikan avulla Astma ja allergiat ovat laajalle levinneitä ja vakavia sairauksia, joista kärsivät miljoonat ihmiset ympäri maailmaa. Koe-eläimillä tehdyt tutkimukset osoittavat, että interleukiini-4 (IL-4) on tärkeä allergisen astman ja allergioiden kehittymiselle ja kroonistumiselle. Se ohjaa T-auttajasolujen (Th-solujen) kehittymistä Th2-tyypin soluiksi, joilla on merkittävä rooli näiden tautien puhkeamisessa. Th2-solut tuottavat myös itse IL-4:ä, joka edesauttaa taudin seuraavien vaiheiden kehittymistä. Erityisesti STAT6-proteiini, joka aktivoituu IL-4-stimulaation seurauksena, on tarpeen Th2- vasteen syntymiselle ja kroonistumiselle antigeenin aiheuttamassa keuhkoputkien astmaattisessa tulehduksessa. Väitöskirjatyöni tarkoituksena oli käyttää kaksidimensionaaliseen elektroforeesiin (2- DE) perustuvaa proteomiikkaa ja massaspektrometriaa uusien Th2-solujen erilaistumista säätelevien proteiinien tunnistamiseksi. Erilaistumattomat Th-solut eristettiin vastasyntyneen napaverestä tai hiiren pernasta. Solut aktivoitiin Tsolureseptorin ja ns. ko-stimulatoristen reseptorien kautta ja erilaistettiin joko Th1- tai Th2-suuntaan vastaavasti erilaistavien IL-12- ja IL-4-sytokiinien avulla. Ensimmäisessä tutkimuksessa in vitro -erilaistettujen Th1- ja Th2-solujen proteomeja verrattiin keskenään proteiinien ilmenemisessä tai proteiinimodifikaatioissa olevien erojen tunnistamiseksi. Kaksi muuta päätutkimusta keskittyivät IL-4:n aiheuttamaan proteiinitason säätelyyn ensimmäisen vuorokauden aikana T-soluaktivaation jälkeen. Näistä ensimmäisessä IL-4:n aiheuttamia eroja tunnistettiin aktivoiduista ihmisen Thsoluista. IL-4:n todettiin säätelevän useita proteiineja kaspaasien välittämissä signalointiteissä sekä lisäävän T-solujen elävyyttä ja aktivoitumista. Toisessa tutkimuksessa STAT6-poistogeenisten hiirien lymfosyyttien proteomia verrattiin villityypin kontrollisoluihin T-soluaktivaation ja IL-4-stimulaation jälkeen. Näissä tutkimuksissa karakterisoitiin useita uusia IL-4:n ja STAT6:n kohdeproteiineja ja löydettiin uusia säätelyverkostoja. Tutkimustulokset ovat johtaneet uusiin Th2-erilaistumismekanismeja koskeviin hypoteeseihin.
Resumo:
The human immune system is constantly interacting with the surrounding stimuli and microorganisms. However, when directed against self or harmless antigens, these vital defense mechanisms can cause great damage. In addition, the understanding the underlying mechanism of several human diseases caused by aberrant immune cell functions, for instance type 1 diabetes and allergies, remains far from being complete. In this Ph.D. study these questions were addressed using genome-wide transcriptomic analyses. Asthma and allergies are characterized by a hyperactive response of the T helper 2 (Th2) immune cells. In this study, the target genes of the STAT6 transcription factor in naïve human T cells were identified with RNAi for the first time. STAT6 was shown to act as a central activator of the genes expression upon IL-4 signaling, with both direct and indirect effects on Th2 cell transcriptome. The core transcription factor network induced by IL-4 was identified from a kinetic analysis of the transcriptome. Type 1 diabetes is an autoimmune disease influenced by both the genetic susceptibility of an individual and the disease-triggering environmental factors. To improve understanding of the autoimmune processes driving pathogenesis in the prediabetic phase in humans, a unique series of prospective whole-blood RNA samples collected from HLA-susceptible children in the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) study was studied. Changes in different timewindows of the pathogenesis process were identified, and especially the type 1 interferon response was activated early and throughout the preclinical T1D. The hygiene hypothesis states that allergic diseases, and lately also autoimmune diseases, could be prevented by infections and other microbial contacts acquired in early childhood, or even prenatally. To study the effects of the standard of hygiene on the development of neonatal immune system, cord blood samples from children born in Finland (high standard of living), Estonia (rapid economic growth) and Russian Karelia (low standard of living) were compared. Children born in Russian Karelia deviated from Finnish and Estonian children in many aspects of the neonatal immune system, which was developmentally more mature in Karelia, resembling that of older infants. The results of this thesis offer significant new information on the regulatory networks associated with immune-mediated diseases in human. The results will facilitate understanding and further research on the role of the identified target genes and mechanisms driving the allergic inflammation and type 1 diabetes, hopefully leading to a new era of drug development.
Resumo:
Human embryonic stem cells are pluripotent cells capable of renewing themselves and differentiating to specialized cell types. Because of their unique regenerative potential, pluripotent cells offer new opportunities for disease modeling, development of regenerative therapies, and treating diseases. Before pluripotent cells can be used in any therapeutic applications, there are numerous challenges to overcome. For instance, the key regulators of pluripotency need to be clarified. In addition, long term culture of pluripotent cells is associated with the accumulation of karyotypic abnormalities, which is a concern regarding the safe use of the cells for therapeutic purposes. The goal of the work presented in this thesis was to identify new factors involved in the maintenance of pluripotency, and to further characterize molecular mechanisms of selected candidate genes. Furthermore, we aimed to set up a new method for analyzing genomic integrity of pluripotent cells. The experimental design applied in this study involved a wide range of molecular biology, genome-wide, and computational techniques to study the pluripotency of stem cells and the functions of the target genes. In collaboration with instrument and reagent company Perkin Elmer, KaryoliteTM BoBsTM was implemented for detecting karyotypic changes of pluripotent cells. Novel genes were identified that are highly and specifically expressed in hES cells. Of these genes, L1TD1 and POLR3G were chosen for further investigation. The results revealed that both of these factors are vital for the maintenance of pluripotency and self-renewal of the hESCs. KaryoliteTM BoBsTM was validated as a novel method to detect karyotypic abnormalities in pluripotent stem cells. The results presented in this thesis offer significant new information on the regulatory networks associated with pluripotency. The results will facilitate in understanding developmental and cancer biology, as well as creating stem cell based applications. KaryoliteTM BoBsTM provides rapid, high-throughput, and cost-efficient tool for screening of human pluripotent cell cultures.
Resumo:
The Finnish electricity distribution sector, rural areas in particular, is facing major challenges because of the economic regulation, tightening supply security requirements and the ageing network asset. Therefore, the target in the distribution network planning and asset management is to develop and renovate the networks to meet these challenges in compliance with the regulations in an economically feasible way. Concerning supply security, the new Finnish Electricity Market Act limits the maximum duration of electricity supply interruptions to six hours in urban areas and 36 hours in rural areas. This has a significant impact on distribution network planning, especially in rural areas where the distribution networks typically require extensive modifications and renovations to meet the supply security requirements. This doctoral thesis introduces a methodology to analyse electricity distribution system development. The methodology is based on and combines elements of reliability analysis, asset management and economic regulation. The analysis results can be applied, for instance, to evaluate the development of distribution reliability and to consider actions to meet the tightening regulatory requirements. Thus, the methodology produces information for strategic decision-making so that DSOs can respond to challenges arising in the electricity distribution sector. The key contributions of the thesis are a network renovation concept for rural areas, an analysis to assess supply security, and an evaluation of the effects of economic regulation on the strategic network planning. In addition, the thesis demonstrates how the reliability aspect affects the placement of automation devices and how the reserve power can be arranged in a rural area network.