7 resultados para Generalized Hough transforms

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The accumulation of aqueous pollutants is becoming a global problem. The search for suitable methods and/or combinations of water treatment processes is a task that can slow down and stop the process of water pollution. In this work, the method of wet oxidation was considered as an appropriate technique for the elimination of the impurities present in paper mill process waters. It has been shown that, when combined with traditional wastewater treatment processes, wet oxidation offers many advantages. The combination of coagulation and wet oxidation offers a new opportunity for the improvement of the quality of wastewater designated for discharge or recycling. First of all, the utilization of coagulated sludge via wet oxidation provides a conditioning process for the sludge, i.e. dewatering, which is rather difficult to carry out with untreated waste. Secondly, Fe2(SO4)3, which is employed earlier as a coagulant, transforms the conventional wet oxidation process into a catalytic one. The use of coagulation as the post-treatment for wet oxidation can offer the possibility of the brown hue that usually accompanies the partial oxidation to be reduced. As a result, the supernatant is less colored and also contains a rather low amount of Fe ions to beconsidered for recycling inside mills. The thickened part that consists of metal ions is then recycled back to the wet oxidation system. It was also observed that wet oxidation is favorable for the degradation of pitch substances (LWEs) and lignin that are present in the process waters of paper mills. Rather low operating temperatures are needed for wet oxidation in order to destruct LWEs. The oxidation in the alkaline media provides not only the faster elimination of pitch and lignin but also significantly improves the biodegradable characteristics of wastewater that contains lignin and pitch substances. During the course of the kinetic studies, a model, which can predict the enhancements of the biodegradability of wastewater, was elaborated. The model includes lumped concentrations suchas the chemical oxygen demand and biochemical oxygen demand and reflects a generalized reaction network of oxidative transformations. Later developments incorporated a new lump, the immediately available biochemical oxygen demand, which increased the fidelity of the predictions made by the model. Since changes in biodegradability occur simultaneously with the destruction of LWEs, an attempt was made to combine these two facts for modeling purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rigorous unit operation model is developed for vapor membrane separation. The new model is able to describe temperature, pressure, and concentration dependent permeation as wellreal fluid effects in vapor and gas separation with hydrocarbon selective rubbery polymeric membranes. The permeation through the membrane is described by a separate treatment of sorption and diffusion within the membrane. The chemical engineering thermodynamics is used to describe the equilibrium sorption of vapors and gases in rubbery membranes with equation of state models for polymeric systems. Also a new modification of the UNIFAC model is proposed for this purpose. Various thermodynamic models are extensively compared in order to verify the models' ability to predict and correlate experimental vapor-liquid equilibrium data. The penetrant transport through the selective layer of the membrane is described with the generalized Maxwell-Stefan equations, which are able to account for thebulk flux contribution as well as the diffusive coupling effect. A method is described to compute and correlate binary penetrant¿membrane diffusion coefficients from the experimental permeability coefficients at different temperatures and pressures. A fluid flow model for spiral-wound modules is derived from the conservation equation of mass, momentum, and energy. The conservation equations are presented in a discretized form by using the control volume approach. A combination of the permeation model and the fluid flow model yields the desired rigorous model for vapor membrane separation. The model is implemented into an inhouse process simulator and so vapor membrane separation may be evaluated as an integralpart of a process flowsheet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis studies gray-level distance transforms, particularly the Distance Transform on Curved Space (DTOCS). The transform is produced by calculating distances on a gray-level surface. The DTOCS is improved by definingmore accurate local distances, and developing a faster transformation algorithm. The Optimal DTOCS enhances the locally Euclidean Weighted DTOCS (WDTOCS) with local distance coefficients, which minimize the maximum error from the Euclideandistance in the image plane, and produce more accurate global distance values.Convergence properties of the traditional mask operation, or sequential localtransformation, and the ordered propagation approach are analyzed, and compared to the new efficient priority pixel queue algorithm. The Route DTOCS algorithmdeveloped in this work can be used to find and visualize shortest routes between two points, or two point sets, along a varying height surface. In a digital image, there can be several paths sharing the same minimal length, and the Route DTOCS visualizes them all. A single optimal path can be extracted from the route set using a simple backtracking algorithm. A new extension of the priority pixel queue algorithm produces the nearest neighbor transform, or Voronoi or Dirichlet tessellation, simultaneously with the distance map. The transformation divides the image into regions so that each pixel belongs to the region surrounding the reference point, which is nearest according to the distance definition used. Applications and application ideas for the DTOCS and its extensions are presented, including obstacle avoidance, image compression and surface roughness evaluation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis deals with distance transforms which are a fundamental issue in image processing and computer vision. In this thesis, two new distance transforms for gray level images are presented. As a new application for distance transforms, they are applied to gray level image compression. The new distance transforms are both new extensions of the well known distance transform algorithm developed by Rosenfeld, Pfaltz and Lay. With some modification their algorithm which calculates a distance transform on binary images with a chosen kernel has been made to calculate a chessboard like distance transform with integer numbers (DTOCS) and a real value distance transform (EDTOCS) on gray level images. Both distance transforms, the DTOCS and EDTOCS, require only two passes over the graylevel image and are extremely simple to implement. Only two image buffers are needed: The original gray level image and the binary image which defines the region(s) of calculation. No other image buffers are needed even if more than one iteration round is performed. For large neighborhoods and complicated images the two pass distance algorithm has to be applied to the image more than once, typically 3 10 times. Different types of kernels can be adopted. It is important to notice that no other existing transform calculates the same kind of distance map as the DTOCS. All the other gray weighted distance function, GRAYMAT etc. algorithms find the minimum path joining two points by the smallest sum of gray levels or weighting the distance values directly by the gray levels in some manner. The DTOCS does not weight them that way. The DTOCS gives a weighted version of the chessboard distance map. The weights are not constant, but gray value differences of the original image. The difference between the DTOCS map and other distance transforms for gray level images is shown. The difference between the DTOCS and EDTOCS is that the EDTOCS calculates these gray level differences in a different way. It propagates local Euclidean distances inside a kernel. Analytical derivations of some results concerning the DTOCS and the EDTOCS are presented. Commonly distance transforms are used for feature extraction in pattern recognition and learning. Their use in image compression is very rare. This thesis introduces a new application area for distance transforms. Three new image compression algorithms based on the DTOCS and one based on the EDTOCS are presented. Control points, i.e. points that are considered fundamental for the reconstruction of the image, are selected from the gray level image using the DTOCS and the EDTOCS. The first group of methods select the maximas of the distance image to new control points and the second group of methods compare the DTOCS distance to binary image chessboard distance. The effect of applying threshold masks of different sizes along the threshold boundaries is studied. The time complexity of the compression algorithms is analyzed both analytically and experimentally. It is shown that the time complexity of the algorithms is independent of the number of control points, i.e. the compression ratio. Also a new morphological image decompression scheme is presented, the 8 kernels' method. Several decompressed images are presented. The best results are obtained using the Delaunay triangulation. The obtained image quality equals that of the DCT images with a 4 x 4

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is devoted to the development of numerical method to deal with convection diffusion dominated problem with reaction term, non - stiff chemical reaction and stiff chemical reaction. The technique is based on the unifying Eulerian - Lagrangian schemes (particle transport method) under the framework of operator splitting method. In the computational domain, the particle set is assigned to solve the convection reaction subproblem along the characteristic curves created by convective velocity. At each time step, convection, diffusion and reaction terms are solved separately by assuming that, each phenomenon occurs separately in a sequential fashion. Moreover, adaptivities and projection techniques are used to add particles in the regions of high gradients (steep fronts) and discontinuities and transfer a solution from particle set onto grid point respectively. The numerical results show that, the particle transport method has improved the solutions of CDR problems. Nevertheless, the method is time consumer when compared with other classical technique e.g., method of lines. Apart from this advantage, the particle transport method can be used to simulate problems that involve movingsteep/smooth fronts such as separation of two or more elements in the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis studies properties of transforms based on parabolic scaling, like Curvelet-, Contourlet-, Shearlet- and Hart-Smith-transform. Essentially, two di erent questions are considered: How these transforms can characterize H older regularity and how non-linear approximation of a piecewise smooth function converges. In study of Hölder regularities, several theorems that relate regularity of a function f : R2 → R to decay properties of its transform are presented. Of particular interest is the case where a function has lower regularity along some line segment than elsewhere. Theorems that give estimates for direction and location of this line, and regularity of the function are presented. Numerical demonstrations suggest also that similar theorems would hold for more general shape of segment of low regularity. Theorems related to uniform and pointwise Hölder regularity are presented as well. Although none of the theorems presented give full characterization of regularity, the su cient and necessary conditions are very similar. Another theme of the thesis is the study of convergence of non-linear M ─term approximation of functions that have discontinuous on some curves and otherwise are smooth. With particular smoothness assumptions, it is well known that squared L2 approximation error is O(M-2(logM)3) for curvelet, shearlet or contourlet bases. Here it is shown that assuming higher smoothness properties, the log-factor can be removed, even if the function still is discontinuous.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this thesis work is to develop and study the Differential Evolution Algorithm for multi-objective optimization with constraints. Differential Evolution is an evolutionary algorithm that has gained in popularity because of its simplicity and good observed performance. Multi-objective evolutionary algorithms have become popular since they are able to produce a set of compromise solutions during the search process to approximate the Pareto-optimal front. The starting point for this thesis was an idea how Differential Evolution, with simple changes, could be extended for optimization with multiple constraints and objectives. This approach is implemented, experimentally studied, and further developed in the work. Development and study concentrates on the multi-objective optimization aspect. The main outcomes of the work are versions of a method called Generalized Differential Evolution. The versions aim to improve the performance of the method in multi-objective optimization. A diversity preservation technique that is effective and efficient compared to previous diversity preservation techniques is developed. The thesis also studies the influence of control parameters of Differential Evolution in multi-objective optimization. Proposals for initial control parameter value selection are given. Overall, the work contributes to the diversity preservation of solutions in multi-objective optimization.