167 resultados para Gas as fuel

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Innovative gas cooled reactors, such as the pebble bed reactor (PBR) and the gas cooled fast reactor (GFR) offer higher efficiency and new application areas for nuclear energy. Numerical methods were applied and developed to analyse the specific features of these reactor types with fully three dimensional calculation models. In the first part of this thesis, discrete element method (DEM) was used for a physically realistic modelling of the packing of fuel pebbles in PBR geometries and methods were developed for utilising the DEM results in subsequent reactor physics and thermal-hydraulics calculations. In the second part, the flow and heat transfer for a single gas cooled fuel rod of a GFR were investigated with computational fluid dynamics (CFD) methods. An in-house DEM implementation was validated and used for packing simulations, in which the effect of several parameters on the resulting average packing density was investigated. The restitution coefficient was found out to have the most significant effect. The results can be utilised in further work to obtain a pebble bed with a specific packing density. The packing structures of selected pebble beds were also analysed in detail and local variations in the packing density were observed, which should be taken into account especially in the reactor core thermal-hydraulic analyses. Two open source DEM codes were used to produce stochastic pebble bed configurations to add realism and improve the accuracy of criticality calculations performed with the Monte Carlo reactor physics code Serpent. Russian ASTRA criticality experiments were calculated. Pebble beds corresponding to the experimental specifications within measurement uncertainties were produced in DEM simulations and successfully exported into the subsequent reactor physics analysis. With the developed approach, two typical issues in Monte Carlo reactor physics calculations of pebble bed geometries were avoided. A novel method was developed and implemented as a MATLAB code to calculate porosities in the cells of a CFD calculation mesh constructed over a pebble bed obtained from DEM simulations. The code was further developed to distribute power and temperature data accurately between discrete based reactor physics and continuum based thermal-hydraulics models to enable coupled reactor core calculations. The developed method was also found useful for analysing sphere packings in general. CFD calculations were performed to investigate the pressure losses and heat transfer in three dimensional air cooled smooth and rib roughened rod geometries, housed inside a hexagonal flow channel representing a sub-channel of a single fuel rod of a GFR. The CFD geometry represented the test section of the L-STAR experimental facility at Karlsruhe Institute of Technology and the calculation results were compared to the corresponding experimental results. Knowledge was gained of the adequacy of various turbulence models and of the modelling requirements and issues related to the specific application. The obtained pressure loss results were in a relatively good agreement with the experimental data. Heat transfer in the smooth rod geometry was somewhat under predicted, which can partly be explained by unaccounted heat losses and uncertainties. In the rib roughened geometry heat transfer was severely under predicted by the used realisable k − epsilon turbulence model. An additional calculation with a v2 − f turbulence model showed significant improvement in the heat transfer results, which is most likely due to the better performance of the model in separated flow problems. Further investigations are suggested before using CFD to make conclusions of the heat transfer performance of rib roughened GFR fuel rod geometries. It is suggested that the viewpoints of numerical modelling are included in the planning of experiments to ease the challenging model construction and simulations and to avoid introducing additional sources of uncertainties. To facilitate the use of advanced calculation approaches, multi-physical aspects in experiments should also be considered and documented in a reasonable detail.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tässä diplomityössä suunniteltiin ja rakennettiin kaasuturbiinin kaasusuuttimien virtausmittauslaitteisto. Suuttimien epätasainen toiminta kasvattaa kaasuturbiinin poistolämpötilahajontaa. Virtausmittauksien perusteella voidaan määrittää suuttimien efektiivinen virtauspoikkipinta-ala. Suuttimien asennusjärjestys opti-moidaan suuttimien välisten pinta-alaerojen mukaisesti, jolloin polttoainevirtaus polttokammioihin on mahdollisimman tasainen ja poistolämpötilahajonta pienenee. Kaasuturbiinin MS6001 esittelyssä keskityttiin tärkeimpiin komponentteihin sekä polttoainesuuttimien testauksen kannalta oleellisiin osiin ja niiden toimintaan. Teoriaosuudessa tarkasteltiin tilavuusvirran sekä suutinvirtauksen laskennassa käytettäviä yhtälöitä. Mittalaitteiston suunnittelu ja toteutus olivat tämän työn laajin osa-alue. Laitteiston keskeiset osat ovat kuristuselin ja suutintestausosa. Kuristuselintyypiksi valittiin rengaskammiollinen kuristuslaippa, joka suun-niteltiin standardin SFS-EN ISO 5167:2003 mukaisesti. Standardissa annettujen yhtälöiden antamia tuloksia verrattiin numeerisella virtauslaskentamallilla lasket-tuihin tuloksiin. Suutinrunkojen ja -kärkien mittauksien suunnittelussa sovellettiin samaa standardia sekä numeerista virtauslaskentaa optimaalisen sijainnin löytämiseksi paineyhteelle. Mittauksissa syntyvien epävarmuuksien arviointiin kiinnitettiin erityistä huomiota. Kokeellisessa osuudessa mitattiin yhden kunnostetun suuttimen, käytetyn suut-timen ja suutinrungon virtausta. Tuloksien perusteella laskettiin efektiiviset pinta-alat, joita verrattiin turbiinivalmistajan ilmoittamiin pinta-aloihin. Lopuksi arvioitiin mittaustulosten perusteella laitteiston toimivuutta. Virhe-arvioinnin ja mittaustulosten perusteella laadittiin teknisiä parannusehdotuksia suutintestauslaitteiston luotettavan toiminnan varmistamiseksi.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lempäälään aiotaan rakentaa uusi kaukolämpölaitos, jossa polttoaineena käytettäisiin haketta. Nykyään Lempäälässä tuotetaan kaukolämpöä maakaasulla, jonka käyttämisestä halutaan siirtyä käyttämään lähialueilta saatavaa biopolttoainetta. Tässä työssä halutaan selvittää, mitä hyötyjä saataisiin hakkeen koneellisesta kuivauksesta. Työn toisena tavoitteena on suunnitella ja pohtia biopolttoaineterminaalin rakentamista sekä käsitellä hakkeen varastointia yleensä. Työssä tutustutaan hakkeeseen aiheesta kertovan kirjallisuuden avulla. Työssä on myös laskettu hakkeen kuivauksesta saatavia hyötyjä hakkeen lämpöarvoon sekä energiatiheyteen. Erityisesti perehdytään metsätähdehakkeeseen, rankahakkeeseen, kuorihakkeeseen sekä sahanpuruun. Laskelmien tuloksista on havaittu, että suurin hyöty hakkeen energiatiheyden parantumisessa saadaan kun hake kuivataan 35 % kosteuspitoisuuteen. Tämän jälkeen energiatiheyden paraneminen tapahtuu hitaammin. Hakkeen kuivauksesta saadaan myös muita hyötyjä kuin energiatiheyden paraneminen. Kuivan hakkeen käsittelyn ja varastoinnin on havaittu olevan vaivattomampaa kuin märän hakkeen. Biopolttoaineterminaalin ja voimalaitoksen tulisi sijaita rinnakkain, jotta hakkeen kuivauksesta saadaan mahdollisimman kustannustehokasta. Näin ollen syntyisi myös säästöjä hakkeen kuljetuksen suhteen. Biopolttoaineterminaalin rakentamista varten tarvittaisiin tilaa alustavien laskelmien perusteella noin yksi hehtaari. Työssä on myös laskettu biopolttoaineterminaalin rakentamisesta aiheutuvia kustannuksia sekä hakkeen kuljetuksesta koituvia logistiikka kustannuksia. Haketerminaalin ja voimalaitoksen sijaintia Lempäälässä on myös kartoitettu.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diplomityön tavoitteena oli tutkia biohiilen teknillisiä ja taloudellisia käyttömahdollisuuksia meesauunien polttoaineena. Suomessa meesauunit käyttävät polttoaineinaan yleensä maakaasua ja polttoöljyä. Näiden polttoaineiden käytön korvaamisessa ja vähentämisessä halvemmilla biopolttoaineilla on saatavilla suuret säästöt ja päästöjen vähennykset. Työssä keskityttiin erityisesti tutkimaan biohiilen mahdollisia polttotapoja, biohiilen polton tuottamien vierasaineiden määrää ja biohiilen käytön taloudellista kannattavuutta meesauunien polttoaineena. Työn pohjalta voidaan sanoa, että biohiilen käyttö meesauunien polttoaineena on mahdollista ja kannattavaa. Biohiiltä voidaan käyttää polttoaineena meesauuneissa samoilla polttotavoilla, mitä on käytetty sellu- ja sementtiteollisuudessa polttamaan biohiilen kaltaisia polttoaineita. Biohiilen polton tuottamien vierasaineiden määrä on samaa suuruusluokkaa kuin puun pölypolton tuottamien vierasaineiden määrä. Vierasaineiden pitoisuuksia voidaan hallita avaamalla kemikaalikiertoa. Biohiilen kanssa kilpaileviin puun pölypolttoon ja kaasutukseen nähden biohiilelle löydettiin etuja.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Työssä tarkastellaan bio- ja maakaasun käyttöä Suomen tieliikenteen polttoaineena. Työn lähtökohtana on selvittää kaasukäyttöisten ajoneuvojen käytön kannattavuutta Suomessa ja niiden etuja muihin polttoaineisiin nähden. Tutkielmassa perehdytään erityisesti biokaasun käyttöön fossiilisten polttoaineiden korvaajana ja mitä vaatimuksia sen käytön lisääminen edellyttää. Työssä perehdytään kaasujen tuotantomenetelmiin, jakeluun, taloudelliseen kannattavuuteen, ympäristöystävällisyyteen ja tulevaisuuden näkymiin.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this thesis is to study whether the use of biomethane as a transportation fuel is reasonable from climate change perspective. In order to identify potentials and challenges for the reduction of greenhouse gas (GHG) emissions, this dissertation focuses on GHG emission comparisons, on feasibility studies and on the effects of various calculation methodologies. The GHG emissions calculations are carried out by using life cycle assessment (LCA) methodologies. The aim of these LCA studies is to figure out the key parameters affecting the GHG emission saving potential of biomethane production and use and to give recommendations related to methodological choices. The feasibility studies are also carried out from the life cycle perspective by dividing the biomethane production chain for various operators along the life cycle of biomethane in order to recognize economic bottlenecks. Biomethane use in the transportation sector leads to GHG emission reductions compared to fossil transportation fuels in most cases. In addition, electricity and heat production from landfill gas, biogas or biomethane leads to GHG reductions as well. Electricity production for electric vehicles is also a potential route to direct biogas or biomethane energy to transportation sector. However, various factors along the life cycle of biomethane affect the GHG reduction potentials. Furthermore, the methodological selections have significant effects on the results. From economic perspective, there are factors related to different operators along the life cycle of biomethane, which are not encouraging biomethane use in the transportation sector. To minimize the greenhouse gas emissions from the life cycle of biomethane, waste feedstock should be preferred. In addition, energy consumption, methane leakages, digestate utilization and the current use of feedstock or biogas are also key factors. To increase the use of biomethane in the transportation sector, political steering is needed to improve the feasibility for the operators. From methodological perspective, it is important to recognize the aim of the life cycle assessment study. The life cycle assessment studies can be divided into two categories: 1.) To produce average GHG information of biomethane to evaluate the acceptability of biomethane use compared to fossil transportation fuels. 2.) To produce GHG information of biomethane related to actual decision-making situations. This helps to figure out the actual GHG emission changes in cases when feedstock, biogas or biomethane are already in other use. For example directing biogas from electricity production to transportation use does not necessarily lead to additional GHG emission reductions. The use of biomethane seems to have a lot of potential for the reduction of greenhouse gas emissions as a transportation fuel. However, there are various aspects related to production processes, to the current use of feedstock or biogas and to the feasibility that have to be taken into account.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Substances emitted into the atmosphere by human activities in urban and industrial areas cause environmental problems such as air quality degradation, respiratory diseases, climate change, global warming, and stratospheric ozone depletion. Volatile organic compounds (VOCs) are major air pollutants, emitted largely by industry, transportation and households. Many VOCs are toxic, and some are considered to be carcinogenic, mutagenic, or teratogenic. A wide spectrum of VOCs is readily oxidized photocatalytically. Photocatalytic oxidation (PCO) over titanium dioxide may present a potential alternative to air treatment strategies currently in use, such as adsorption and thermal treatment, due to its advantageous activity under ambient conditions, although higher but still mild temperatures may also be applied. The objective of the present research was to disclose routes of chemical reactions, estimate the kinetics and the sensitivity of gas-phase PCO to reaction conditions in respect of air pollutants containing heteroatoms in their molecules. Deactivation of the photocatalyst and restoration of its activity was also taken under consideration to assess the practical possibility of the application of PCO to the treatment of air polluted with VOCs. UV-irradiated titanium dioxide was selected as a photocatalyst for its chemical inertness, non-toxic character and low cost. In the present work Degussa P25 TiO2 photocatalyst was mostly used. In transient studies platinized TiO2 was also studied. The experimental research into PCO of following VOCs was undertaken: - methyl tert-butyl ether (MTBE) as the basic oxygenated motor fuel additive and, thus, a major non-biodegradable pollutant of groundwater; - tert-butyl alcohol (TBA) as the primary product of MTBE hydrolysis and PCO; - ethyl mercaptan (ethanethiol) as one of the reduced sulphur pungent air pollutants in the pulp-and-paper industry; - methylamine (MA) and dimethylamine (DMA) as the amino compounds often emitted by various industries. The PCO of VOCs was studied using a continuous-flow mode. The PCO of MTBE and TBA was also studied by transient mode, in which carbon dioxide, water, and acetone were identified as the main gas-phase products. The volatile products of thermal catalytic oxidation (TCO) of MTBE included 2-methyl-1-propene (2-MP), carbon monoxide, carbon dioxide and water; TBA decomposed to 2-MP and water. Continuous PCO of 4 TBA proceeded faster in humid air than dry air. MTBE oxidation, however, was less sensitive to humidity. The TiO2 catalyst was stable during continuous PCO of MTBE and TBA above 373 K, but gradually lost activity below 373 K; the catalyst could be regenerated by UV irradiation in the absence of gas-phase VOCs. Sulphur dioxide, carbon monoxide, carbon dioxide and water were identified as ultimate products of PCO of ethanethiol. Acetic acid was identified as a photocatalytic oxidation by-product. The limits of ethanethiol concentration and temperature, at which the reactor performance was stable for indefinite time, were established. The apparent reaction kinetics appeared to be independent of the reaction temperature within the studied limits, 373 to 453 K. The catalyst was completely and irreversibly deactivated with ethanethiol TCO. Volatile PCO products of MA included ammonia, nitrogen dioxide, nitrous oxide, carbon dioxide and water. Formamide was observed among DMA PCO products together with others similar to the ones of MA. TCO for both substances resulted in the formation of ammonia, hydrogen cyanide, carbon monoxide, carbon dioxide and water. No deactivation of the photocatalyst during the multiple long-run experiments was observed at the concentrations and temperatures used in the study. PCO of MA was also studied in the aqueous phase. Maximum efficiency was achieved in an alkaline media, where MA exhibited high fugitivity. Two mechanisms of aqueous PCO – decomposition to formate and ammonia, and oxidation of organic nitrogen directly to nitrite - lead ultimately to carbon dioxide, water, ammonia and nitrate: formate and nitrite were observed as intermediates. A part of the ammonia formed in the reaction was oxidized to nitrite and nitrate. This finding helped in better understanding of the gasphase PCO pathways. The PCO kinetic data for VOCs fitted well to the monomolecular Langmuir- Hinshelwood (L-H) model, whereas TCO kinetic behaviour matched the first order process for volatile amines and the L-H model for others. It should be noted that both LH and the first order equations were only the data fit, not the real description of the reaction kinetics. The dependence of the kinetic constants on temperature was established in the form of an Arrhenius equation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The environmental impact of landfill is a growing concern in waste management practices. Thus, assessing the effectiveness of the solutions implemented to alter the issue is of importance. The objectives of the study were to provide an insight of landfill advantages, and to consolidate landfill gas importance among others alternative fuels. Finally, a case study examining the performances of energy production from a land disposal at Ylivieska was carried out to ascertain the viability of waste to energy project. Both qualitative and quantitative methods were applied. The study was conducted in two parts; the first was the review of literatures focused on landfill gas developments. Specific considerations were the conception of mechanism governing the variability of gas production and the investigation of mathematical models often used in landfill gas modeling. Furthermore, the analysis of two main distributed generation technologies used to generate energy from landfill was carried out. The review of literature revealed a high influence of waste segregation and high level of moisture content for waste stabilization process. It was found that the enhancement in accuracy for forecasting gas rate generation can be done with both mathematical modeling and field test measurements. The result of the case study mainly indicated the close dependence of the power output with the landfill gas quality and the fuel inlet pressure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxy-fuel combustion in a circulating fluidized bed (CFB) boiler appears to be a promising option for capturing CO2 in power plants. Oxy-fuel combustion is based on burning of fuel in the mixture of oxygen and re-circulated flue gas instead of air. Limestone (CaCO3) is typically used for capturing of SO2 in CFB boilers where limestone calcines to calcium oxide (CaO). Because of high CO2 concentration in oxy-fuel combustion, calcination reaction may be hindered or carbonation, the reverse reaction of calcination, may occur. Carbonation of CaO particles can cause problems especially in the circulation loop of a CFB boiler where temperature level is lower than in the furnace. The aim of the thesis was to examine carbonation of CaO in a fluidized bed heat exchanger of a CFB boiler featuring oxy-fuel combustion. The calculations and analyzing were based on measurement data from an oxy-fuel pilot plant and on 0-dimensional (0D) gas balance of a fluidized bed heat exchanger. Additionally, the objective was to develop a 1-dimensional (1D) model of a fluidized bed heat exchanger by searching a suitable pre-exponential factor for a carbonation rate constant. On the basis of gas measurement data and the 0D gas balance, it was found that the amount of fluidization gas decreased as it flew through the fluidized bed heat exchanger. Most likely the reason for this was carbonation of CaO. It was discovered that temperature has a promoting effect on the reaction rate of carbonation. With the 1D model, a suitable pre-exponential factor for the equation of carbonation rate constant was found. However, during measurements there were several uncertainties, and in the calculations plenty of assumptions were made. Besides, the temperature level in the fluidized bed heat exchanger was relatively low during the measurements. Carbonation should be considered when fluidized bed heat exchangers and the capacity of related fans are designed for a CFB boiler with oxy-fuel combustion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cement industry significantly associated with high greenhouse gas (GHG) emissions. Considering the environmental impact, particularly global warming potential, it is important to reduce these emissions to air. The aim of the study is to investigate the mitigation possibility of GHG emissions in Ethiopian cement industry. Life cycle assessment (LCA) method used to identify and quantify GHG emissions during one ton of ordinary portland cement (OPC) production. Three mitigation scenarios: alternative fuel use, clinker substitution and thermal energy efficiency were applied on a representative gate-to-gate flow model developed with GaBi 6 software. The results of the study indicate that clinker substitution and alternative fuel use play a great role for GHG emissions mitigation with affordable cost. Applying most energy efficient kiln technology, which in turn reduces the amount of thermal energy use, has the least GHG emissions reduction intensity and high implementation cost comparing to the other scenarios. It was found that the cumulative GHG emissions mitigation potential along with other selected mitigation scenarios can be at least 48.9% per ton of cement production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Finland, other Nordic countries and European Union aim to decarbonize their energy production by 2050. Decarbonization requires large scale implementation of non-emission energy sources, i.e. renewable energy and nuclear power. Stochastic renewable energy sources present a challenge to balance the supply and demand for energy. Energy storages, non-emissions fuels in mobility and industrial processes are required whenever electrification is not possible. Neo-Carbon project studies the decarbonizing the energy production and the role of synthetic gas in it. This thesis studies the industrial processes in steel production, oil refining, cement manufacturing and glass manufacturing, where natural gas is already used or fuel switch to SNG is possible. The technical potential for fuel switching is assessed, and economic potential is necessary after this. All studied processes have potential for fuel switching, but total decarbonization of steel production, oil refining requires implementation of other zero-emission technologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The global interest towards renewable energy production such as wind and solar energy is increasing, which in turn calls for new energy storage concepts due to the larger share of intermittent energy production. Power-to-gas solutions can be utilized to convert surplus electricity to chemical energy which can be stored for extended periods of time. The energy storage concept explored in this thesis is an integrated energy storage tank connected to an oxy-fuel combustion plant. Using this approach, flue gases from the plant could be fed directly into the storage tank and later converted into synthetic natural gas by utilizing electrolysis-methanation route. This work utilizes computational fluid dynamics to model the desublimation of carbon dioxide inside a storage tank containing cryogenic liquid, such as liquefied natural gas. Numerical modelling enables the evaluation of the transient flow patterns caused by the desublimation, as well as general fluid behaviour inside the tank. Based on simulations the stability of the cryogenic storage and the magnitude of the key parameters can be evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reduction of greenhouse gas emissions in the European Union promotes the combustion of biomass rather than fossil fuels in energy production. Circulating fluidized bed (CFB) combustion offers a simple, flexible and efficient way to utilize untreated biomass in a large scale. CFB furnaces are modeled in order to understand their operation better and to help in the design of new furnaces. Therefore, physically accurate models are needed to describe the heavily coupled multiphase flow, reactions and heat transfer inside the furnace. This thesis presents a new model for the fuel flow inside the CFB furnace, which acknowledges the physical properties of the fuel and the multiphase flow phenomena inside the furnace. This model is applied with special interest in the firing of untreated biomass. An experimental method is utilized to characterize gas-fuel drag force relations. This characteristic drag force approach is developed into a gas-fuel drag force model suitable for irregular, non-spherical biomass particles and applied together with the new fuel flow model in the modeling of a large-scale CFB furnace. The model results are physically valid and achieve very good correspondence with the measurement results from large-scale CFB furnace firing biomass. With the methods and models presented in this work, the fuel flow field inside a circulating fluidized bed furnace can be modeled with better accuracy and more efficiently than in previous studies with a three-dimensional holistic model frame.