7 resultados para Galaxies : Photometry
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
In this dissertation, Active Galactic Nuclei (AGN) and their host galaxies are discussed. Together with transitional events, such as supernovae and gamma-ray bursts, AGN are the most energetic phenomena in the Universe. The dominant fraction of their luminosity originates from the center of a galaxy, where accreting gas falls into a supermassive black hole, converting gravitational energy to radiation. AGN have a wide range of observed properties: e.g. in their emission lines, radio emission, and variability. Most likely, these properties depend significantly on their orientation to our line-of-sight, and to unify AGN into physical classes it is crucial to observe their orientation-independent properties, such as the host galaxies. Furthermore, host galaxy studies are essential to understand the formation and co-evolution of galactic bulges and supermassive black holes. In this thesis, the main focus is on observationally characterizing AGN host galaxies using optical and near-infrared imaging and spectroscopy. BL Lac objects are a class of AGN characterized by rapidly variable and polarized continuum emission across the electromagnetic spectrum, and coredominated radio emission. The near-infrared properties of intermediate redshift BL Lac host galaxies are studied in Paper I. They are found to be large elliptical galaxies that are more luminous than their low redshift counterparts suggesting a strong luminosity evolution, and a contribution from a recent star formation episode. To analyze the stellar content of galaxies in more detail multicolor data, especially observations at blue wavelengths, are essential. In Paper III, optical - near-infrared colors and color gradients are derived for low redshift BL Lac host galaxies. They show bluer colors and steeper color gradients than inactive ellipticals which, most likely, are caused by a relatively young stellar population indicating a different evolutionary stage between AGN hosts and inactive ellipticals. In Paper II, near-infrared imaging of intermediate redshift radio-quiet quasar hosts is used to study their luminosity evolution. The hosts are large elliptical galaxies, but they are systematically fainter than the hosts of radio-loud quasars at similar redshifts, suggesting a link between the luminosity of the host galaxies and the radio properties of AGN. In Paper IV, the characteristics of near-infrared stellar absorption features of low redshift radio galaxies are compared with those of inactive early-type galaxies. The comparison suggests that early-type galaxies with AGN are in a different evolutionary stage than their inactive counterparts. Moreover, radio galaxies are found to contain stellar populations containing both old and intermediate age components.
Resumo:
This dissertation presents studies on the environments of active galaxies. Paper I is a case study of a cluster of galaxies containing BL Lac object RGB 1745+398. We measured the velocity dispersion, mass, and richness of the cluster. This was one of the most thorough studies of the environments of a BL Lac object. Methods used in the paper could be used in the future for studying other clusters as well. In Paper II we studied the environments of nearby quasars in the Sloan Digital Sky Survey (SDSS). We found that quasars have less neighboring galaxies than luminous inactive galaxies. In the large-scale structure, quasars are usually located at the edges of superclusters or even in void regions. We concluded that these low-redshift quasars may have become active only recently because the galaxies in low-density environments evolve later to the phase where quasar activity can be triggered. In Paper III we extended the analysis of Paper II to other types of AGN besides quasars. We found that different types of AGN have different large-scale environments. Radio galaxies are more concentrated in superclusters, while quasars and Seyfert galaxies prefer low-density environments. Different environments indicate that AGN have different roles in galaxy evolution. Our results suggest that activity of galaxies may depend on their environment on the large scale. Our results in Paper III raised questions of the cause of the environment-dependency in the evolution of galaxies. Because high-density large-scale environments contain richer groups and clusters than the underdense environments, our results could reflect smaller-scale effects. In Paper IV we addressed this problem by studying the group and supercluster scale environments of galaxies together. We compared the galaxy populations in groups of different richnesses in different large-scale environments. We found that the large-scale environment affects the galaxies independently of the group richness. Galaxies in low-density environments on the large scale are more likely to be star-forming than those in superclusters even if they are in groups with the same richness. Based on these studies, the conclusion of this dissertation is that the large-scale environment affects the evolution of galaxies. This may be caused by different “speed” of galaxy evolution in low and high-density environments: galaxies in dense environments reach certain phases of evolution earlier than galaxies in underdense environments. As a result, the low-density regions at low redshifts are populated by galaxies in earlier phases of evolution than galaxies in high-density regions.
Resumo:
The number of molecular diagnostic assays has increased tremendously in recent years.Nucleic acid diagnostic assays have been developed, especially for the detection of human pathogenic microbes and genetic markers predisposing to certain diseases. Closed-tube methods are preferred because they are usually faster and easier to perform than heterogenous methods and in addition, target nucleic acids are commonly amplified leading to risk of contamination of the following reactions by the amplification product if the reactions are opened. The present study introduces a new closed-tube switchable complementation probes based PCR assay concept where two non-fluorescent probes form a fluorescent lanthanide chelate complex in the presence of the target DNA. In this dual-probe PCR assay method one oligonucleotide probe carries a non-fluorescent lanthanide chelate and another probe a light absorbing antenna ligand. The fluorescent lanthanide chelate complex is formed only when the non-fluorescent probes are hybridized to adjacent positions into the target DNA bringing the reporter moieties in close proximity. The complex is formed by self-assembled lanthanide chelate complementation where the antenna ligand is coordinated to the lanthanide ion captured in the chelate. The complementation probes based assays with time-resolved fluorescence measurement showed low background signal level and hence, relatively high nucleic acid detection sensitivity (low picomolar target concentration). Different lanthanide chelate structures were explored and a new cyclic seven dentate lanthanide chelate was found suitable for complementation probe method. It was also found to resist relatively high PCR reaction temperatures, which was essential for the PCR assay applications. A seven-dentate chelate with two unoccupied coordination sites must be used instead of a more stable eight- or nine-dentate chelate because the antenna ligand needs to be coordinated to the free coordination sites of the lanthanide ion. The previously used linear seven-dentate lanthanide chelate was found to be unstable in PCR conditions and hence, the new cyclic chelate was needed. The complementation probe PCR assay method showed high signal-to-background ratio up to 300 due to a low background fluorescence level and the results (threshold cycles) in real-time PCR were reached approximately 6 amplification cycles earlier compared to the commonly used FRET-based closed-tube PCR method. The suitability of the complementation probe method for different nucleic acid assay applications was studied. 1) A duplex complementation probe C. trachomatis PCR assay with a simple 10-minute urine sample preparation was developed to study suitability of the method for clinical diagnostics. The performance of the C. trachomatis assay was equal to the commercial C. trachomatis nucleic acid amplification assay containing more complex sample preparation based on DNA extraction. 2) A PCR assay for the detection of HLA-DQA1*05 allele, that is used to predict the risk of type 1 diabetes, was developed to study the performance of the method in genotyping. A simple blood sample preparation was used where the nucleic acids were released from dried blood sample punches using high temperature and alkaline reaction conditions. The complementation probe HLA-DQA1*05 PCR assay showed good genotyping performance correlating 100% with the routinely used heterogenous reference assay. 3) To study the suitability of the complementation probe method for direct measurement of the target organism, e.g., in the culture media, the complementation probes were applied to amplificationfree closed-tube bacteriophage quantification by measuring M13 bacteriophage ssDNA. A low picomolar bacteriophage concentration was detected in a rapid 20- minute assay. The assay provides a quick and reliable alternative to the commonly used and relatively unreliable UV-photometry and time-consuming culture based bacteriophage detection methods and indicates that the method could also be used for direct measurement of other micro-organisms. The complementation probe PCR method has a low background signal level leading to a high signal-to-background ratio and relatively sensitive nucleic acid detection. The method is compatible with simple sample preparation and it was shown to tolerate residues of urine, blood, bacteria and bacterial culture media. The common trend in nucleic acid diagnostics is to create easy-to-use assays suitable for rapid near patient analysis. The complementation probe PCR assays with a brief sample preparation should be relatively easy to automate and hence, would allow the development of highperformance nucleic acid amplification assays with a short overall assay time.
Resumo:
This doctoral dissertation presents studies of the formation and evolution of galaxies, through observations and simulations of galactic halos. The halo is the component of galaxies which hosts some of the oldest objects we know of in the cosmos; it is where clues to the history of galaxies are found, for example, by how the chemical structure is related to the dynamics of objects in the halo. The dynamical and chemical structure of halos, both in the Milky Way’s own halo, and in two elliptical galaxies, is the underlying theme in the research. I focus on the density falloff and chemistry of the two external halos, and on the dynamics, density falloff, and chemistry of the Milky Way halo. I first study galactic halos via computer simulations, to test the long- term stability of an anomalous feature recently found in kinematics of the Milky Way’s metal-poor stellar halo. I find that the feature is transient, making its origin unclear. I use a second set of simulations to test if an initially strong relation between the dynamics and chemistry of halo glob-ular clusters in a Milky Way-type galaxy is affected by a merging satellite galaxy, and find that the relation remains strong despite a merger in which the satellite is a third of the mass of the host galaxy. From simulations, I move to observing halos in nearby galaxies, a challenging procedure as most of the light from galaxies comes from the disk and bulge components as opposed to the halo. I use Hubble Space Tele scope observations of the halo of the galaxy M87 and, comparing to similar observations of NGC 5128, find that the chemical structure of the inner halo is similar for both of these giant elliptical galaxies. I use Very Large Telescope observations of the outer halo of NGC 5128 (Centaurus A) and, because of the difficultly in resolving dim extragalac- tic stellar halo populations, I introduce a new technique to subtract the contaminating background galaxies. A transition from a metal-rich stellar halo to a metal-poor has previously been discovered in two different types of galaxies, the disk galaxy M31 and the classic elliptical NGC 3379. Unexpectedly, I discover in this third type of galaxy, the merger remnant NGC 5128, that the density of metal-rich and metal-poor halo stars falls at the same rate within the galactocentric radii of 8 − 65 kpc, the limit of our observations. This thesis presents new results which open opportunities for future investigations.
Resumo:
In any manufacturing system, there are many factors that are affecting and limiting the capacity of the entire system. This thesis addressed a study on how to improve the production capacity in a Finnish company (Viljavuuspalvelu Oy) through different methods like bottleneck analysis, Overall Equipment Effectiveness (OEE), and Just in Time production. Four analyzing methods have been studied in order to detect the bottleneck machine in Viljavuuspalvelu Oy. The results shows that the bottleneck machine in the industrial area that constraint the production is the grinding machine while the bottleneck machine in the laboratory section is the photometry machine. In addition, the Overall Equipment Effectiveness (OEE) of the entire system of the studied case was calculated and it has been found that the OEE of the Viljavuuspalvelu Oy is 35.75%. Moreover, two methods on how to increase the OEE were studied and it was shown that either the total output of the company should be 1254 samples/shift in order to have an OEE around 85% which is considered as a world class or the Ideal run rate should be 1.45 pieces/minute. In addition, some realistic methods are applied based on the finding in this thesis to increase the OEE factor in the company and in one realistic method the % OEE has increase to 62.59%. Finally, an explanation on how to implement the Just in Time production in Viljavuuspalvelu Oy has been studied.