4 resultados para Galaxies: star clusters: individual: 30 Doradus

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This dissertation presents studies on the environments of active galaxies. Paper I is a case study of a cluster of galaxies containing BL Lac object RGB 1745+398. We measured the velocity dispersion, mass, and richness of the cluster. This was one of the most thorough studies of the environments of a BL Lac object. Methods used in the paper could be used in the future for studying other clusters as well. In Paper II we studied the environments of nearby quasars in the Sloan Digital Sky Survey (SDSS). We found that quasars have less neighboring galaxies than luminous inactive galaxies. In the large-scale structure, quasars are usually located at the edges of superclusters or even in void regions. We concluded that these low-redshift quasars may have become active only recently because the galaxies in low-density environments evolve later to the phase where quasar activity can be triggered. In Paper III we extended the analysis of Paper II to other types of AGN besides quasars. We found that different types of AGN have different large-scale environments. Radio galaxies are more concentrated in superclusters, while quasars and Seyfert galaxies prefer low-density environments. Different environments indicate that AGN have different roles in galaxy evolution. Our results suggest that activity of galaxies may depend on their environment on the large scale. Our results in Paper III raised questions of the cause of the environment-dependency in the evolution of galaxies. Because high-density large-scale environments contain richer groups and clusters than the underdense environments, our results could reflect smaller-scale effects. In Paper IV we addressed this problem by studying the group and supercluster scale environments of galaxies together. We compared the galaxy populations in groups of different richnesses in different large-scale environments. We found that the large-scale environment affects the galaxies independently of the group richness. Galaxies in low-density environments on the large scale are more likely to be star-forming than those in superclusters even if they are in groups with the same richness. Based on these studies, the conclusion of this dissertation is that the large-scale environment affects the evolution of galaxies. This may be caused by different “speed” of galaxy evolution in low and high-density environments: galaxies in dense environments reach certain phases of evolution earlier than galaxies in underdense environments. As a result, the low-density regions at low redshifts are populated by galaxies in earlier phases of evolution than galaxies in high-density regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this dissertation, Active Galactic Nuclei (AGN) and their host galaxies are discussed. Together with transitional events, such as supernovae and gamma-ray bursts, AGN are the most energetic phenomena in the Universe. The dominant fraction of their luminosity originates from the center of a galaxy, where accreting gas falls into a supermassive black hole, converting gravitational energy to radiation. AGN have a wide range of observed properties: e.g. in their emission lines, radio emission, and variability. Most likely, these properties depend significantly on their orientation to our line-of-sight, and to unify AGN into physical classes it is crucial to observe their orientation-independent properties, such as the host galaxies. Furthermore, host galaxy studies are essential to understand the formation and co-evolution of galactic bulges and supermassive black holes. In this thesis, the main focus is on observationally characterizing AGN host galaxies using optical and near-infrared imaging and spectroscopy. BL Lac objects are a class of AGN characterized by rapidly variable and polarized continuum emission across the electromagnetic spectrum, and coredominated radio emission. The near-infrared properties of intermediate redshift BL Lac host galaxies are studied in Paper I. They are found to be large elliptical galaxies that are more luminous than their low redshift counterparts suggesting a strong luminosity evolution, and a contribution from a recent star formation episode. To analyze the stellar content of galaxies in more detail multicolor data, especially observations at blue wavelengths, are essential. In Paper III, optical - near-infrared colors and color gradients are derived for low redshift BL Lac host galaxies. They show bluer colors and steeper color gradients than inactive ellipticals which, most likely, are caused by a relatively young stellar population indicating a different evolutionary stage between AGN hosts and inactive ellipticals. In Paper II, near-infrared imaging of intermediate redshift radio-quiet quasar hosts is used to study their luminosity evolution. The hosts are large elliptical galaxies, but they are systematically fainter than the hosts of radio-loud quasars at similar redshifts, suggesting a link between the luminosity of the host galaxies and the radio properties of AGN. In Paper IV, the characteristics of near-infrared stellar absorption features of low redshift radio galaxies are compared with those of inactive early-type galaxies. The comparison suggests that early-type galaxies with AGN are in a different evolutionary stage than their inactive counterparts. Moreover, radio galaxies are found to contain stellar populations containing both old and intermediate age components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The power rating of wind turbines is constantly increasing; however, keeping the voltage rating at the low-voltage level results in high kilo-ampere currents. An alternative for increasing the power levels without raising the voltage level is provided by multiphase machines. Multiphase machines are used for instance in ship propulsion systems, aerospace applications, electric vehicles, and in other high-power applications including wind energy conversion systems. A machine model in an appropriate reference frame is required in order to design an efficient control for the electric drive. Modeling of multiphase machines poses a challenge because of the mutual couplings between the phases. Mutual couplings degrade the drive performance unless they are properly considered. In certain multiphase machines there is also a problem of high current harmonics, which are easily generated because of the small current path impedance of the harmonic components. However, multiphase machines provide special characteristics compared with the three-phase counterparts: Multiphase machines have a better fault tolerance, and are thus more robust. In addition, the controlled power can be divided among more inverter legs by increasing the number of phases. Moreover, the torque pulsation can be decreased and the harmonic frequency of the torque ripple increased by an appropriate multiphase configuration. By increasing the number of phases it is also possible to obtain more torque per RMS ampere for the same volume, and thus, increase the power density. In this doctoral thesis, a decoupled d–q model of double-star permanent-magnet (PM) synchronous machines is derived based on the inductance matrix diagonalization. The double-star machine is a special type of multiphase machines. Its armature consists of two three-phase winding sets, which are commonly displaced by 30 electrical degrees. In this study, the displacement angle between the sets is considered a parameter. The diagonalization of the inductance matrix results in a simplified model structure, in which the mutual couplings between the reference frames are eliminated. Moreover, the current harmonics are mapped into a reference frame, in which they can be easily controlled. The work also presents methods to determine the machine inductances by a finite-element analysis and by voltage-source inverters on-site. The derived model is validated by experimental results obtained with an example double-star interior PM (IPM) synchronous machine having the sets displaced by 30 electrical degrees. The derived transformation, and consequently, the decoupled d–q machine model, are shown to model the behavior of an actual machine with an acceptable accuracy. Thus, the proposed model is suitable to be used for the model-based control design of electric drives consisting of double-star IPM synchronous machines.