4 resultados para Gait biomechanics
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Convective transport, both pure and combined with diffusion and reaction, can be observed in a wide range of physical and industrial applications, such as heat and mass transfer, crystal growth or biomechanics. The numerical approximation of this class of problemscan present substantial difficulties clue to regions of high gradients (steep fronts) of the solution, where generation of spurious oscillations or smearing should be precluded. This work is devoted to the development of an efficient numerical technique to deal with pure linear convection and convection-dominated problems in the frame-work of convection-diffusion-reaction systems. The particle transport method, developed in this study, is based on using rneshless numerical particles which carry out the solution along the characteristics defining the convective transport. The resolution of steep fronts of the solution is controlled by a special spacial adaptivity procedure. The serni-Lagrangian particle transport method uses an Eulerian fixed grid to represent the solution. In the case of convection-diffusion-reaction problems, the method is combined with diffusion and reaction solvers within an operator splitting approach. To transfer the solution from the particle set onto the grid, a fast monotone projection technique is designed. Our numerical results confirm that the method has a spacial accuracy of the second order and can be faster than typical grid-based methods of the same order; for pure linear convection problems the method demonstrates optimal linear complexity. The method works on structured and unstructured meshes, demonstrating a high-resolution property in the regions of steep fronts of the solution. Moreover, the particle transport method can be successfully used for the numerical simulation of the real-life problems in, for example, chemical engineering.
Resumo:
Kandidaatintyössä toteutettiin yläraajan hauiskäännön simulointimallin luonti Anybody- ja Opensim-ohjelmilla. Hauiskäännön aikana tutkittiin lihaksissa esiintyviä voimia ja kyynärnivelessä esiintyviä kontaktivoimia.
Resumo:
The absolute nodal coordinate formulation was originally developed for the analysis of structures undergoing large rotations and deformations. This dissertation proposes several enhancements to the absolute nodal coordinate formulation based finite beam and plate elements. The main scientific contribution of this thesis relies on the development of elements based on the absolute nodal coordinate formulation that do not suffer from commonly known numerical locking phenomena. These elements can be used in the future in a number of practical applications, for example, analysis of biomechanical soft tissues. This study presents several higher-order Euler–Bernoulli beam elements, a simple method to alleviate Poisson’s and transverse shear locking in gradient deficient plate elements, and a nearly locking free gradient deficient plate element. The absolute nodal coordinate formulation based gradient deficient plate elements developed in this dissertation describe most of the common numerical locking phenomena encountered in the formulation of a continuum mechanics based description of elastic energy. Thus, with these fairly straightforwardly formulated elements that are comprised only of the position and transverse direction gradient degrees of freedom, the pathologies and remedies for the numerical locking phenomena are presented in a clear and understandable manner. The analysis of the Euler–Bernoulli beam elements developed in this study show that the choice of higher gradient degrees of freedom as nodal degrees of freedom leads to a smoother strain field. This improves the rate of convergence.