12 resultados para GROWTH-CONTROL

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bidirectional exchange of information between the cancer cells and their environment is essential for cancer to evolve. Cancer cells lose the ability to regulate their growth, gain the ability to detach from neighboring cells and finally some of the cells disseminate from the primary tumor and invade to the adjacent tissue. During cancer progression, cells acquire features that promote cancer motility and proliferation one of them being increased filopodia number. Filopodia are dynamic actin-rich structures extending from the leading edge of migrating cells and the main function of these structures is to serve as environmental sensors. It is nowadays widely appreciated, that not only the cancer cells, but also the surrounding of the tumor – the tumor microenvironment- contribute to cancer cell dissemination and tumor growth. Activated stromal fibroblasts, also known as cancer-associated fibroblasts (CAFs) actively participate on tumor progression. CAFs are the most abundant cell type surrounding the cancer cells and they are the main cell type producing the extracellular matrix (ECM) within tumor stroma. CAFs secrete growth factors to promote tumor growth, direct cancer cell invasion as well as modify the stromal ECM architecture. The aim of this thesis was to investigate the function of filopodia, particularly the role of filopodia-inducing protein Myosin-X (Myo10), in breast cancer cell invasion and metastasis. We found that Myo10 is an important regulator of basal type breast cancer spreading downstream of mutant p53. In addition, I investigated the role of CAFs and their secreted matrix on tumor growth. According to the results, CAF-derived matrix has altered organization and stiffness which induces the carcinoma cell proliferation via epigenetic mechanisms. I identified histone demethylase enzyme JMJD1a to be regulated by the stiffness and to participate in stiffness induced growth control.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Työn tarkoituksena oli tutkia kasvun vaikutuksia yrityksen talous-ohjaukseen. Yrityksen kasvun mandollisuuksia ja kasvuvaiheita tutkimalla pyrittiin löytämään ne keskeiset osa-alueet, joiden seuranta on tärkeää yrityksen kasvukyvykkyyden ja kasvun hallinnan kannalta nimenomaan talousohjauksen näkökulmasta. Tutkimus on toteutettu yhden tapauksen kvalitatiivisena tutkimuksena, jota on täydennetty myös kvantitatiivisin menetelmin. Tutkimusaineistoa kerättiin usealla eri metodilla. Tutkimustulokset osoittivat, että talousohjauksen rooli on erittäin tärkeä voimakkaasti kasvavassa yrityksessä. Talousohjauksen ensisijainen tehtävä kasvuyrityksessä on tukea johtoa muutostilanteessa luomalla yhtenäiset toimintatavat ja seurantajärjestelmät. Myös kannattavuuden ja rahoituksen seuranta on kasvuyritykselle tärkeää.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tehoelektoniikkalaitteella tarkoitetaan ohjaus- ja säätöjärjestelmää, jolla sähköä muokataan saatavilla olevasta muodosta haluttuun uuteen muotoon ja samalla hallitaan sähköisen tehon virtausta lähteestä käyttökohteeseen. Tämä siis eroaa signaalielektroniikasta, jossa sähköllä tyypillisesti siirretään tietoa hyödyntäen eri tiloja. Tehoelektroniikkalaitteita vertailtaessa katsotaan yleensä niiden luotettavuutta, kokoa, tehokkuutta, säätötarkkuutta ja tietysti hintaa. Tyypillisiä tehoelektroniikkalaitteita ovat taajuudenmuuttajat, UPS (Uninterruptible Power Supply) -laitteet, hitsauskoneet, induktiokuumentimet sekä erilaiset teholähteet. Perinteisesti näiden laitteiden ohjaus toteutetaan käyttäen mikroprosessoreja, ASIC- (Application Specific Integrated Circuit) tai IC (Intergrated Circuit) -piirejä sekä analogisia säätimiä. Tässä tutkimuksessa on analysoitu FPGA (Field Programmable Gate Array) -piirien soveltuvuutta tehoelektroniikan ohjaukseen. FPGA-piirien rakenne muodostuu erilaisista loogisista elementeistä ja niiden välisistä yhdysjohdoista.Loogiset elementit ovat porttipiirejä ja kiikkuja. Yhdysjohdot ja loogiset elementit ovat piirissä kiinteitä eikä koostumusta tai lukumäärää voi jälkikäteen muuttaa. Ohjelmoitavuus syntyy elementtien välisistä liitännöistä. Piirissä on lukuisia, jopa miljoonia kytkimiä, joiden asento voidaan asettaa. Siten piirin peruselementeistä voidaan muodostaa lukematon määrä erilaisia toiminnallisia kokonaisuuksia. FPGA-piirejä on pitkään käytetty kommunikointialan tuotteissa ja siksi niiden kehitys on viime vuosina ollut nopeaa. Samalla hinnat ovat pudonneet. Tästä johtuen FPGA-piiristä on tullut kiinnostava vaihtoehto myös tehoelektroniikkalaitteiden ohjaukseen. Väitöstyössä FPGA-piirien käytön soveltuvuutta on tutkittu käyttäen kahta vaativaa ja erilaista käytännön tehoelektroniikkalaitetta: taajuudenmuuttajaa ja hitsauskonetta. Molempiin testikohteisiin rakennettiin alan suomalaisten teollisuusyritysten kanssa soveltuvat prototyypit,joiden ohjauselektroniikka muutettiin FPGA-pohjaiseksi. Lisäksi kehitettiin tätä uutta tekniikkaa hyödyntävät uudentyyppiset ohjausmenetelmät. Prototyyppien toimivuutta verrattiin vastaaviin perinteisillä menetelmillä ohjattuihin kaupallisiin tuotteisiin ja havaittiin FPGA-piirien mahdollistaman rinnakkaisen laskennantuomat edut molempien tehoelektroniikkalaitteiden toimivuudessa. Työssä on myösesitetty uusia menetelmiä ja työkaluja FPGA-pohjaisen säätöjärjestelmän kehitykseen ja testaukseen. Esitetyillä menetelmillä tuotteiden kehitys saadaan mahdollisimman nopeaksi ja tehokkaaksi. Lisäksi työssä on kehitetty FPGA:n sisäinen ohjaus- ja kommunikointiväylärakenne, joka palvelee tehoelektroniikkalaitteiden ohjaussovelluksia. Uusi kommunikointirakenne edistää lisäksi jo tehtyjen osajärjestelmien uudelleen käytettävyyttä tulevissa sovelluksissa ja tuotesukupolvissa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crystal growth is an essential phase in crystallization kinetics. The rate of crystal growth provides significant information for the design and control of crystallization processes; nevertheless, obtaining accurate growth rate data is still challenging due to a number of factors that prevail in crystal growth. In industrial crystallization, crystals are generally grown from multi-componentand multi-particle solutions under complicated hydrodynamic conditions; thus, it is crucial to increase the general understanding of the growth kinetics in these systems. The aim of this work is to develop a model of the crystal growth rate from solution. An extensive literature review of crystal growth focuses on themodelling of growth kinetics and thermodynamics, and new measuring techniques that have been introduced in the field of crystallization. The growth of a singlecrystal is investigated in binary and ternary systems. The binary system consists of potassium dihydrogen phosphate (KDP, crystallizing solute) and water (solvent), and the ternary system includes KDP, water and an organic admixture. The studied admixtures, urea, ethanol and 1-propanol, are employed at relatively highconcentrations (of up to 5.0 molal). The influence of the admixtures on the solution thermodynamics is studied using the Pitzer activity coefficient model. Theprediction method of the ternary solubility in the studied systems is introduced and verified. The growth rate of the KDP (101) face in the studied systems aremeasured in the growth cell as a function of supersaturation, the admixture concentration, the solution velocity over a crystal and temperature. In addition, the surface morphology of the KDP (101) face is studied using ex situ atomic force microscopy (AFM). The crystal growth rate in the ternary systems is modelled on the basis of the two-step growth model that contains the Maxwell-Stefan (MS) equations and a surface-reaction model. This model is used together with measuredcrystal growth rate data to develop a new method for the evaluation of the model parameters. The validation of the model is justified with experiments. The crystal growth rate in an imperfectly mixed suspension crystallizer is investigatedusing computational fluid dynamics (CFD). A solid-liquid suspension flow that includes multi-sized particles is described by the multi-fluid model as well as by a standard k-epsilon turbulence model and an interface momentum transfer model. The local crystal growth rate is determined from calculated flow information in a diffusion-controlled crystal growth regime. The calculated results are evaluated experimentally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prostate cancer is generally a slowly developing disease. However, some cancers develop into an aggressive, metastasic and consequently life-threatening state. The mechanisms of prostate cancer spread are still mainly unidentified but hormones and growth factors are known to been involved. The forming of new blood vessels i.e. angiogenesis is crucial for tumor growth. Blood vessels and lymphatic vessels are also prominent routes for metastasis. Both angiogenic and lymphangiogenic factors are overexpressed in prostate cancer. We established an in vivo model to study the factors effecting human prostate cancer growth and metastasis. Tumors were produced by the orthotopic inoculation of PC-3 prostate cancer cells into the prostates of immunodeficient mice. Like human prostate tumors, these tumors metastasized to prostate-draining lymph nodes. Treatment of the mice with the bisphosphonate alendronate known to decrease prostate cancer cell invasion in vitro inhibited metastasis and decreased tumor growth. Decreased tumor growth was associated with decreased angiogenesis and increased apoptosis of tumor cells. To elucidate the role of angiogenesis in prostate cancer progression, we studied the growth of orthotopic PC-3 tumors overexpressing fibroblast growth factor b (FGF8b) known to be expressed in human prostate cancer. FGF8b increased tumor growth and angiogenesis, which were both associated with a characteristic gene expression pattern. To study the role of lymphangiogenesis, we produced orthotopic PC-3 tumors overexpressing vascular endothelial growth factor C (VEGF-C). Blocking of VEGF-C receptor (VEGFR3) completely inhibited lymph node metastasis whereas overexpression of VEGF-C increased tumor growth and angiogenesis. VEGF-C also increased lung metastases but, surprisingly, decreased spread to lymph nodes. This suggests that the expanded vascular network was primarily used as a route for tumor spreading. Finally, the functionality of the capillary network in subcutaneous FGF8b-overexpressing PC-3 tumors was compared to that of tumors overexpressing VEGF. Both tumors showed angiogenic morphology and grew faster than control tumors. However, FGF8b tumors were hypoxic and their perfusion and oxygenation was poor compared with VEGF tumors. This suggests that the growth advantage of FGF8b tumors is more likely due to stimulated proliferation than effective angiogenesis. In conclusion, these results show that orthotopic prostate tumors provide a useful model to explore the mechanisms of prostate cancer growth and metastasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crystallization is a purification method used to obtain crystalline product of a certain crystal size. It is one of the oldest industrial unit processes and commonly used in modern industry due to its good purification capability from rather impure solutions with reasonably low energy consumption. However, the process is extremely challenging to model and control because it involves inhomogeneous mixing and many simultaneous phenomena such as nucleation, crystal growth and agglomeration. All these phenomena are dependent on supersaturation, i.e. the difference between actual liquid phase concentration and solubility. Homogeneous mass and heat transfer in the crystallizer would greatly simplify modelling and control of crystallization processes, such conditions are, however, not the reality, especially in industrial scale processes. Consequently, the hydrodynamics of crystallizers, i.e. the combination of mixing, feed and product removal flows, and recycling of the suspension, needs to be thoroughly investigated. Understanding of hydrodynamics is important in crystallization, especially inlargerscale equipment where uniform flow conditions are difficult to attain. It is also important to understand different size scales of mixing; micro-, meso- and macromixing. Fast processes, like nucleation and chemical reactions, are typically highly dependent on micro- and mesomixing but macromixing, which equalizes the concentrations of all the species within the entire crystallizer, cannot be disregarded. This study investigates the influence of hydrodynamics on crystallization processes. Modelling of crystallizers with the mixed suspension mixed product removal (MSMPR) theory (ideal mixing), computational fluid dynamics (CFD), and a compartmental multiblock model is compared. The importance of proper verification of CFD and multiblock models is demonstrated. In addition, the influence of different hydrodynamic conditions on reactive crystallization process control is studied. Finally, the effect of extreme local supersaturation is studied using power ultrasound to initiate nucleation. The present work shows that mixing and chemical feeding conditions clearly affect induction time and cluster formation, nucleation, growth kinetics, and agglomeration. Consequently, the properties of crystalline end products, e.g. crystal size and crystal habit, can be influenced by management of mixing and feeding conditions. Impurities may have varying impacts on crystallization processes. As an example, manganese ions were shown to replace magnesium ions in the crystal lattice of magnesium sulphate heptahydrate, increasing the crystal growth rate significantly, whereas sodium ions showed no interaction at all. Modelling of continuous crystallization based on MSMPR theory showed that the model is feasible in a small laboratoryscale crystallizer, whereas in larger pilot- and industrial-scale crystallizers hydrodynamic effects should be taken into account. For that reason, CFD and multiblock modelling are shown to be effective tools for modelling crystallization with inhomogeneous mixing. The present work shows also that selection of the measurement point, or points in the case of multiprobe systems, is crucial when process analytical technology (PAT) is used to control larger scale crystallization. The thesis concludes by describing how control of local supersaturation by highly localized ultrasound was successfully applied to induce nucleation and to control polymorphism in reactive crystallization of L-glutamic acid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study is part of the STRIP study, which is a long-term, randomized controlled trial, designed to decrease the exposure of children in the intervention group (n=540) to known risk factors of atherosclerosis. The main focus of the intervention was the quality of dietary fat. The control group (n=522) did not receive any individualized counselling. Food consumption was evaluated with food records, and blood samples were drawn and growth was measured regularly for all participating children from 13 months to 9 years. A subsample of 66 children participated in a dental health survey. The number of studies on children’s carbohydrate intake, especially fibre intake, is insufficient. The current international recommendations for fibre intake in children are based on average assumptions and data extrapolated from intakes in adults and intake recommendations for adults. Finnish nutrition recommendations lack strict recommendations for dietary fibre in children. Due to fibre’s high bulk volume, excessive dietary fibre is considered to decrease energy density and hence it may have an adverse effect on growth. If fats are reduced from the diet, the low-fat diet may become high in sucrose. Therefore, especially in the STRIP study, it is important to determine the use of fibre and sucrose in children and possible associations with growth and nutrition as well as dental health. The results of the present study indicate that a high fibre intake does not displace energy or disturb growth in children and that children with high fibre intake have better quality of diet than those with low fibre intake. Additionally, dietary fibre intake associated inversely with serum cholesterol concentration. Other carbohydrates also affected serum lipid levels as well, since total carbohydrates, sucrose, and fructose increased serum triglyceride concentration. Total carbohydrate intake reduced HDL cholesterol concentration only in children with apoE3 or apoE4 phenotype. Over the period from the 1970s to the 1990s the dental health of children in Finland has substantially improved despite an increase in sucrose intake. The improvement was thought to be due to improved dental hygiene and the use of fluorine. However, during the past twenty years improvement in dental health has stopped. The present study showed that high long-term sugar intake increases risk of caries in children. High intake of sugar had also negative effects on the diet of children, because it worsens dietary quality by displacing essential nutrients. Furthermore, the quality of dietary fat was worse in children with high sucrose intake. In this study the children’s high sucrose intake was not associated with overweight, but interestingly, it associated inversely with growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adequate supply of oxygen is essential for the survival of multicellular organisms. However, in several conditions the supply of oxygen can be disturbed and the tissue oxygenation is compromised. This condition is termed hypoxia. Oxygen homeostasis is maintained by the regulation of both the use and delivery of oxygen through complex, sensitive and cell-type specific transcriptional responses to hypoxia. This is mainly achieved by one master regulator, a transcription factor called hypoxiainducible factor 1 (HIF-1). The amount of HIF-1 is under tight oxygen-dependent control by a family of oxygen-dependent prolyl hydroxylase domain proteins (PHDs) that function as the cellular oxygen sensors. Three family members (PHD1-3) are known to regulate HIF of which the PHD2 isoform is thought to be the main regulator of HIF-1. The supply of oxygen can be disturbed in pathophysiological conditions, such as ischemic disorders and cancer. Cancer cells in the hypoxic parts of the tumors exploit the ability of HIF-1 to turn on the mechanisms for their survival, resistance to treatment, and escape from the oxygen- and nutrient-deprived environment. In this study, the expression and regulation of PHD2 were studied in normal and cancerous tissues, and its significance in tumor growth. The results show that the expression of PHD2 is induced in hypoxic cells. It is overexpressed in head and neck squamous cell carcinomas and colon adenocarcinomas. Although PHD2 normally resides in the cytoplasm, nuclear translocation of PHD2 was also seen in a subset of tumor cells. Together with the overexpression, the nuclear localization correlated with the aggressiveness of the tumors. The nuclear localization of PHD2 caused an increase in the anchorage-independent growth of cancer cells. This study provides information on the role of PHD2, the main regulator of HIF expression, in cancer progression. This knowledge may prove to be valuable in targeting the HIF pathway in cancer treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regulation of cell growth, death, and polarization by ERBB4 ErbB4 is a member of the epidermal growth factor receptor (EGFR, ErbB) family. The other members are EGFR, ErbB2 and ErbB3. ErbB receptors are important regulators for example in cardiovascular, neural and breast development but control key cellular functions also in many adult tissues. Abnormal ErbB signaling has been shown to be involved in various illnesses such as cancers and heart diseases. Among the ErbBs, ErbB4 has been shown to have unique signaling characteristics. ErbB4 exists in four alternatively spliced isoforms that are expressed in a tissue-specific manner. Two of the isoforms can be cleaved by membrane proteases, resulting in release of soluble intracellular domains (ICD). Once released into the cytosol, the ICD is capable of translocating into the nucleus and participating in regulation of transcription. The functional differences and the tissue-specific expression patterns suggest isoformspecific roles for ErbB4 isoforms. However, the abilities of ErbB4 isoforms to differently regulate cellular functions were discovered only recently and are not well understood. This study aimed to determine the expression patterns of ErbB4 in normal and diseased tissue, and to define whether the cleavable and non-cleavable isoforms could regulate different target genes and therefore, cellular functions. In this study, a comprehensive ErbB4 expression pattern in several normal tissues, various cancers and non-neoplastic diseases was determined. In addition, the data demonstrated that the cleavable and non-cleavable ErbB4 isoforms could regulate different cellular functions and target genes. Finally, this study defined the cellular responses regulated by ErbB4 during kidney development.