11 resultados para Functionalized carbon nanotubes
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Electrochemical double-layer supercapacitors have an intermediate position between rechargeable batteries, which can store high amounts of energy, and dielectric capacitors, which have high output power. Supercapacitors are widely suggested to be used in automobiles (recuperation during braking, facilitate engine starting, electric stabilization of the system), industry (forklifts, elevators), hybrid off-road machinery and also in consumer electronics. Supercapacitor electrodes require highly porous material. Typically, activated carbon is used. Specific surface area of activated carbon is approximately 1000 m2 per gram. Carbon nanotubes represent one of prospective materials. According to numerous studies this material allows to improve the properties of supercapacitors. The task of this Master‘s Thesis was to test multiwalled carbon nanotubes and become confident with the testing methods.
Resumo:
Demand for increased energy efficiency has put an immense need for novel energy efficient systems. Electrical machines are considered as a much matured technology. Further improvement in this technology needs of finding new material to incorporate in electrical machines. Progress of carbon nanotubes research over the latest decade can open a new horizon in this aspect. Commonly known as ‘magic material’, carbon nanotubes (CNTs) have promising material properties that can change considerably the course of electrical machine design. It is believed that winding material based on carbon nanotubes create the biggest hope for a giant leap of modern technology and energy efficient systems. Though carbon nanotubes (CNTs) have shown amazing properties theoretically and practically during the latest 20 years, to the best knowledge of the author, no research has been carried out to find the future possibilities of utilizing carbon nanotubes as conductors in rotating electrical machines. In this thesis, the possibilities of utilizing carbon nanotubes in electrical machines have been studied. The design changes of electrical machine upon using carbon nanotubes instead of copper have been discussed vividly. A roadmap for this carbon nanotube winding machine has been discussed from synthesis, manufacturing and operational points of view.
Resumo:
Lappeenranta University of Technology School of Technology Technical Physics Evgenii Zhukov MAGNETIZATION STUDIES OF POLYSTYRENE/MULTIWALL CARBON NANOTUBE COMPOSITE FILMS Master’s thesis 2015 55 pages, 41 pictures, 9 Tables. Examiners: Professor Erkki Lähderanta D.Sc. Ivan Zakharchuk Keywords: polystyrene, multi-walled carbon nanotubes, MWCNT, composite, magnetization, SQUID. In this thesis magnetic properties of polystyrene/multiwall carbon nanotube (MWCNT) composites are investigated with Quantum Design SQUID magnetometer (MPMS XL). The surface of the composite films is studied via BRUKER Multimode 8 Atomic Force Microscope, as well. The polystyrene/MWCNT composites have been prepared by the group of professor Okotrub (Physics Chemistry of Nanomaterials laboratory, Nikolaev Institute of Inorganic Chemistry, Russia). The composite films have been prepared by solution processing and stretching method. The approximate length and inner diameter of the MWCNTs used in fabrication are 260 μm and 10 nm, respectively. The content of MWCNTs is 1 and 2.5 contents percent (wt%) for studied samples. The stretching of the samples is 30% for samples with 1 and 2.5 wt% content, and one sample with 1 wt% loading of MWCNTs is 100% stretched. MWCNTs aligned perpendicular to a silicon substrate are used as a reference sample. The magnetization field dependencies of the samples exhibit hysteresis behavior. The values of saturation magnetization of composite films are much less compared to that of the reference sample. The saturation magnetization coercitivity field value drops with decrease of MWCNT content. At high magnetic fields strong presence of diamagnetism is observed. Measurements in magnetic field parallel and perpendicular to the composite plate display anisotropy with respect to the direction of stretching. Temperature dependences of magnetization for all samples display difference between zero-field cooled and field-cooled curves of magnetization. This divergence confirms the presence of magnetic interactions in the material. The atomic force microscopy study of the composites’ surfaces revealed that they are relatively smooth and the nanotubes are aligned with the axis of stretching to some extent.
Resumo:
Hiilinanoputki on vasta 90-luvun alussa löydetty uusi hiilestä koostuva materiaali, jonka erinomaiset mekaaniset ja fysikaaliset ominaisuudet tarjoavat niiden käytölle useita mahdollisia sovelluskohteita. Teknologian puute ja valmistusmenetelmien korkeat kustannukset ovat kuitenkin estäneet tehokkaasti niiden käytön nykyisten materiaalien ja puolijohteiden korvaajana. Tämän työn tarkoituksena on esitellä yleisimmät menetelmät hiilinanoputkien syntetisoimiseksi sekä suunnitella laite yksiseinäisten hiilinanoputkien tuottamiseen kemiallisen höyrydeposition avulla. Lisäksi tavoitteena on luoda laitteelle modulaarinen rakenne, jolloin sen eri osien korvaaminen rajapintojen sallimissa rajoissa on helppoa. Reaktorin mekaanisen suunnittelun ja komponenttien valinnan lisäksi työssä käsitellään laitteen kaasu- ja lämpövirtauksia, prosessissa tärkeiden katalyyttipartikkelien tuotantoa sekä laitteessa tarvittavien jäähdytysjärjestelmien mitoituksia. Tuloksena syntyi helposti toteutettava suunnitelma yksiseinäisiä nanoputkia tuottavan reaktorin valmistamiseksi. Työ jatkuu laitteen rakentamisella, testaamisella sekä jatkokehittelyllä.
Resumo:
Ion exchange membranes are indispensable for the separation of ionic species. They can discriminate between anions and cations depending on the type of fixed ionic group present in the membrane. These conventional ion exchange membranes (CIX) have exceptional ionic conductivity, which is advantageous in various electromembrane separation processes such as electrodialysis, electrodeionisation and electrochemical ion exchange. The main disadvantage of CIX membranes is their high electrical resistance owing to the fact that the membranes are electronically non conductive. An alternative can be electroactive ion exchange membranes, which are ionically and electronically conducting. Polypyrrole (PPy) is a type of electroactive ion exchange material as well as a commonly known conducting polymer. When PPy membranes are repeatedly reduced and oxidised, ions are pumped through the membrane. The main aim of this thesis was to develop electroactive cation transport membranes based on PPy for the selective transport of divalent cations. Membranes developed composed of PPy films deposited on commercially available support materials. To carry out this study, cation exchange membranes based on PPy doped with immobile anions were prepared. Two types of dopant anions known to interact with divalent metal ions were considered, namely 4-sulphonic calix[6]arene (C6S) and carboxylated multiwalled carbon nanotubes (CNT). The transport of ions across membranes containing PPy doped with polystyrene sulphonate (PSS) and PPy doped with para-toluene sulphonate (pTS) was also studied in order to understand the nature of ion transport and permeability across PPy(CNT) and PPy(C6S) membranes. In the course of these studies, membrane characterisation was performed using electrochemical quartz crystal microbalance (EQCM) and scanning electron microscopy (SEM). Permeability of the membranes towards divalent cations was explored using a two compartment transport cell. EQCM results demonstrated that the ion exchange behaviour of polypyrrole is dependent on a number of factors including the type of dopant anion present, the type of ions present in the surrounding medium, the scan rate used during the experiment and the previous history of the polymer film. The morphology of PPy films was found to change when the dopant anion was varied and even when the thickness of the film was altered in some cases. In nearly all cases the permeability of the membranes towards metal ions followed the order K+ > Ca2+ > Mn2+. The one exception was PPy(C6S), for which the permeability followed the order Ca2+ ≥ K+ > Mn2+ > Co2+ > Cr3+. The above permeability sequences show a strong dependence on the size of the metal ions with metal ions having the smallest hydrated radii exhibiting the highest flux. Another factor that affected the permeability towards metal ions was the thickness of the PPy films. Films with the least thickness showed higher metal ion fluxes. Electrochemical control over ion transport across PPy(CNT) membrane was obtained when films composed of the latter were deposited on track-etched Nucleopore® membranes as support material. In contrast, the flux of ions across the same film was concentration gradient dependent when the polymer was deposited on polyvinylidene difluoride membranes as support material. However, electrochemical control over metal ion transport was achieved with a bilayer type of PPy film consisting of PPy(pTS)/PPy(CNT), irrespective of the type of support material. In the course of studying macroscopic charge balance during transport experiments performed using a two compartment transport cell, it was observed that PPy films were non-permselective. A clear correlation between the change in pH in the receiving solution and the ions transported across the membrane was observed. A decrease in solution pH was detected when the polymer membrane acted primarily as an anion exchanger, while an increase in pH occurred when it functioned as a cation exchanger. When there was an approximately equal flux of anions and cations across the polymer membrane, the pH in the receiving solution was in the range 6 - 8. These observations suggest that macroscopic charge balance during the transport of cations and anions across polypyrrole membranes was maintained by introduction of anions (OH-) and cations (H+) produced via electrolysis of water.
Resumo:
Tämän työn tarkoitus on seuloa oleelliset prosessiparametrit superkondensaattoreiden elektrodikomposiittien valmistuksessa, jotka vaikuttavat kondensaattorin laatuun. Tarkoitus on tutkia parametreja, joiden avulla prosessia on mahdollista optimoida. Työn tarkoituksena on tutkia myös itse komponenttimateriaalien valmistusvaiheen sekoitusprosessia mitatulla ja laskennallisella seokseen siirtyvällä tehonkulutuksella. Työn kirjallisuusosassa esitetään superkondensaattoreiden rakennetta, toimintamekanismia ja ominaisuuksia sähköenergian varastoijana. Lisäksi tarkastellaan tavallisimpia kondensaattoreihin sisältyviä materiaaleja, erityisesti hiilinanoputkia ja selluloosakuituja. Sekoitusprosesseista tarkastellaan kokeellisessa osassa käytettävien sekoituslaitteita ja niiden toimintamekanismeja komponenttien sekoitusprosesseissa. Kokeellisessa osassa tutkimuskysymyksiksi asetettiin eri sekoitusparametrien (materiaalin määrä ja laatu sekä sekoitusajat) vaikutus superkondensaattorien elektrodiarkkien ominaiskapasitansseihin. Testit suoritettiin LUT Prosessien laboratoriossa, ja testeissä massojen sekoitukseen käytettiin roottoristaattoria ja ultraäänisekoitinta. Lisäksi tutkittiin prosessin skaalausta varten skaalatulla laitteistolla sekoitettuja massanäytteitä. Sekoitusprosessin riittävyyttä varten tutkittiin kokeellisesti käytettyjen sekoituslaitteiden tehonkulutusta. Lisäksi roottoristaattorille tehtiin laskentaohjelmalla virtaussimulaatio paikallisen tehonkulutuksen selvittämiseksi Testeissä todettiin tutkittujen parametrien vaikutus, mutta tulosten perusteella varsinaista optimointia ei kyetty tekemään. Tulokset kuitenkin antavat suunnan, johon prosessia voi optimointia varten kehittää. Myös sekoitukseen todettiin siirtyvän suuri määrä tehoa tutkituilla laitteilla, mitä voidaan pitää mahdollisesti riittävänä käytettyjen komponenttien sekoitukseen.
Resumo:
The need for industries to remain competitive in the welding business, has created necessity to develop innovative processes that can exceed customer’s demand. Significant development in improving weld efficiency, during the past decades, still have their drawbacks, specifically in the weld strength properties. The recent innovative technologies have created smallest possible solid material known as nanomaterial and their introduction in welding production has improved the weld strength properties and to overcome unstable microstructures in the weld. This study utilizes a qualitative research method, to elaborate the methods of introducing nanomaterial to the weldments and the characteristic of the welds produced by different welding processes. The study mainly focuses on changes in the microstructural formation and strength properties on the welded joint and also discusses those factors influencing such improvements, due to the addition of nanomaterials. The effect of nanomaterial addition in welding process modifies the physics of joining region, thereby, resulting in significant improvement in the strength properties, with stable microstructure in the weld. The addition of nanomaterials in the welding processes are, through coating on base metal, addition in filler metal and utilizing nanostructured base metal. However, due to its insignificant size, the addition of nanomaterials directly to the weld, would poses complications. The factors having major influence on the joint integrity are dispersion of nanomaterials, characteristics of the nanomaterials, quantity of nanomaterials and selection of nanomaterials. The addition of nanomaterials does not affect the fundamental properties and characteristics of base metals and the filler metal. However, in some cases, the addition of nanomaterials lead to the deterioration of the joint properties by unstable microstructural formations. Still research are ongoing to achieve high joint integrity, in various materials through different welding processes and also on other factors that influence the joint strength.
Resumo:
Hiilinanojohteet ovat sähkönjohteita, joiden valmistuksessa on käytetty hiilinanoputkia, eli yhden atomikerroksen paksuisesta hiiliatomiverkosta koostuvia rakenteita. Hiilinanoputket ovat viime vuosina keränneet suurta mielenkiintoa erinomaisten fysikaalisten ominaisuuksiensa ansiosta. Tämän työn tavoitteena on selvittää, voitaisiinko hiilinanojohteiden sähkönjohtavuus saada riittävälle tasolle, jotta niillä saatettaisiin korvata nykyisiä kuparista valmistettuja johteita. Vaikka kuparilla on erinomainen johtavuus, sen käytöllä on omat heikkoutensa, kuten korkea hinta, virran ahtautuminen, suuri tiheys ja heikko mekaaninen kestävyys. Hiilinanojohteet voisivat olla yksi osa-alue kehitettäessä uusia energiatehokkaita ja ympäristöystävällisiä laitteita nyky-yhteiskunnan tarpeisiin. Työn tulosten perusteella voidaan todeta, että nykyisten hiilinanojohteiden sähkönjohtavuus on yhä liian pieni laajamittaiseen käyttöön. Johtavuus on kuitenkin lisääntynyt jatkuvasti viime vuosina. Kehitystyön avulla hiilimateriaalin potentiaalia saadaan hyödynnettyä koko ajan enemmän, ja ajan myötä hiilijohteista voi tulla varteenotettava kilpailija perinteisille johdemateriaaleille. Hiilinanojohteet tulevat luultavasti aluksi yleistymään käyttökohteissa, joissa niiden muut ominaisuudet täydentävät hyvin sähkönjohtavuutta.
Resumo:
Nanotubes are one of the most perspective materials in modern nanotechologies. It makes present investigation very actual. In this work magnetic properties of multi-walled nanotubes on polystyrene substrate are investigated by using quantum magnetometer SQUID. Main purpose was to obtain magnetic field and temperature dependences of magnetization and to compare them to existing theoretical models of magnetism in carbon-bases structures. During data analysis a mathematical algorithm for obtained data filtration was developed because measurement with quantum magnetometer assume big missives of number data, which contain accidental errors. Nature of errors is drift of SQUID signal, errors of different parts of measurement station. Nanotube samples on polystyrene substrate were studied with help of atomic force microscope. On the surface traces of nanotube were found contours, which were oriented in horizontal plane. This feature was caused by rolling method for samples. Detailed comparison of obtained dependences with information of other researches on this topic allows to obtain some conclusions about nature of magnetism in the samples. It emphasizes importance and actuality of this scientific work.
Resumo:
Due to diminishing petroleum reserves, unsteady market situation and the environmental concerns associated with utilization of fossil resources, the utilization of renewables for production of energy and chemicals (biorefining) has gained considerable attention. Biomass is the only sustainable source of organic compounds that has been proposed as petroleum equivalent for the production of fuels, chemicals and materials. In fact, it would not be wrong to say that the only viable answer to sustainably convene our future energy and material requirements remain with a bio-based economy with biomass based industries and products. This has prompted biomass valorization (biorefining) to become an important area of industrial research. While many disciplines of science are involved in the realization of this effort, catalysis and knowledge of chemical technology are considered to be particularly important to eventually render this dream to come true. Traditionally, the catalyst research for biomass conversion has been focused primarily on commercially available catalysts like zeolites, silica and various metals (Pt, Pd, Au, Ni) supported on zeolites, silica etc. Nevertheless, the main drawbacks of these catalysts are coupled with high material cost, low activity, limited reusability etc. – all facts that render them less attractive in industrial scale applications (poor activity for the price). Thus, there is a particular need to develop active, robust and cost efficient catalytic systems capable of converting complex biomass molecules. Saccharification, esterification, transesterification and acetylation are important chemical processes in the valorization chain of biomasses (and several biomass components) for production of platform chemicals, transportation fuels, food additives and materials. In the current work, various novel acidic carbons were synthesized from wastes generated from biodiesel and allied industries, and employed as catalysts in the aforementioned reactions. The structure and surface properties of the novel materials were investigated by XRD, XPS, elemental analysis, SEM, TEM, TPD and N2-physisorption techniques. The agro-industrial waste derived sulfonic acid functionalized novel carbons exhibit excellent catalytic activity in the aforementioned reactions and easily outperformed liquid H2SO4 and conventional solid acids (zeolites, ion-exchange resins etc). The experimental results indicated strong influence of catalyst pore-structure (pore size, pore-volume), concentration of –SO3H groups and surface properties in terms of the activity and selectivity of these catalysts. Here, a large pore catalyst with high –SO3H density exhibited the highest esterification and transesterification activity, and was successfully employed in biodiesel production from fatty acids and low grade acidic oils. Also, a catalyst decay model was proposed upon biodiesel production and could explain that the catalyst loses its activity mainly due to active site blocking by adsorption of impurities and by-products. The large pore sulfonated catalyst also exhibited good catalytic performance in the selective synthesis of triacetin via acetylation of glycerol with acetic anhydride and out-performed the best zeolite H-Y with respect to reusability. It also demonstrated equally good activity in acetylation of cellulose to soluble cellulose acetates, with the possibility to control cellulose acetate yield and quality (degree of substitution, DS) by a simple adjustment of reaction time and acetic anhydride concentration. In contrast, the small pore and highly functionalized catalysts obtained by hydrothermal method and from protein rich waste (Jatropha de-oiled waste cake, DOWC), were active and selective in the esterification of glycerol with fatty acids to monoglycerides and saccharification of cellulosic materials, respectively. The operational stability and reusability of the catalyst was found to depend on the stability of –SO3H function (leaching) as well as active site blocking due to adsorption of impurities during the reaction. Thus, our results corroborate the potential of DOWC derived sulfated mesoporous active carbons as efficient integrated solid acid catalysts for valorization of biomass to platform chemicals, biofuel, bio-additive, surfactants and celluloseesters.