3 resultados para Front-end

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automation technologies are widely acclaimed to have the potential to significantly reduce energy consumption and energy-related costs in buildings. However, despite the abundance of commercially available technologies, automation in domestic environments keep on meeting commercial failures. The main reason for this is the development process that is used to build the automation applications, which tend to focus more on technical aspects rather than on the needs and limitations of the users. An instance of this problem is the complex and poorly designed home automation front-ends that deter customers from investing in a home automation product. On the other hand, developing a usable and interactive interface is a complicated task for developers due to the multidisciplinary challenges that need to be identified and solved. In this context, the current research work investigates the different design problems associated with developing a home automation interface as well as the existing design solutions that are applied to these problems. The Qualitative Data Analysis approach was used for collecting data from research papers and the open coding process was used to cluster the findings. From the analysis of the data collected, requirements for designing the interface were derived. A home energy management functionality for a Web-based home automation front-end was developed as a proof-of-concept and a user evaluation was used to assess the usability of the interface. The results of the evaluation showed that this holistic approach to designing interfaces improved its usability which increases the chances of its commercial success.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In modern society, the body health is a very important issue to everyone. With the development of the science and technology, the new and developed body health monitoring device and technology will play the key role in the daily medical activities. This paper focus on making progress in the design of the wearable vital sign system. A vital sign monitoring system has been proposed and designed. The whole detection system is composed of signal collecting subsystem, signal processing subsystem, short-range wireless communication subsystem and user interface subsystem. The signal collecting subsystem is composed of light source and photo diode, after emiting light of two different wavelength, the photo diode collects the light signal reflected by human body tissue. The signal processing subsystem is based on the analog front end AFE4490 and peripheral circuits, the collected analog signal would be filtered and converted into digital signal in this stage. After a series of processing, the signal would be transmitted to the short-range wireless communication subsystem through SPI, this subsystem is mainly based on Bluetooth 4.0 protocol and ultra-low power System on Chip(SoC) nRF51822. Finally, the signal would be transmitted to the user end. After proposing and building the system, this paper focus on the research of the key component in the system, that is, the photo detector. Based on the study of the perovskite materials, a low temperature processed photo detector has been proposed, designed and researched. The device is made up of light absorbing layer, electron transporting and hole blocking layer, hole transporting and electron blocking layer, conductive substrate layer and metal electrode layer. The light absorbing layer is the important part of whole device, and it is fabricated by perovskite materials. After accepting the light, the electron-hole pair would be produced in this layer, and due to the energy level difference, the electron and hole produced would be transmitted to metal electrode and conductive substrate electrode through electron transporting layer and hole transporting layer respectively. In this way the response current would be produced. Based on this structure, the specific fabrication procedure including substrate cleaning; PEDOT:PSS layer preparation; pervoskite layer preparation; PCBM layer preparation; C60, BCP, and Ag electrode layer preparation. After the device fabrication, a series of morphological characterization and performance testing has been done. The testing procedure including film-forming quality inspection, response current and light wavelength analysis, linearity and response time and other optical and electrical properties testing. The testing result shows that the membrane has been fabricated uniformly; the device can produce obvious response current to the incident light with the wavelength from 350nm to 800nm, and the response current could be changed along with the light wavelength. When the light wavelength keeps constant, there exists a good linear relationship between the intensity of the response current and the power of the incident light, based on which the device could be used as the photo detector to collect the light information. During the changing period of the light signal, the response time of the device is several microseconds, which is acceptable working as a photo detector in our system. The testing results show that the device has good electronic and optical properties, and the fabrication procedure is also repeatable, the properties of the devices has good uniformity, which illustrates the fabrication method and procedure could be used to build the photo detector in our wearable system. Based on a series of testing results, the paper has drawn the conclusion that the photo detector fabricated could be integrated on the flexible substrate and is also suitable for the monitoring system proposed, thus made some progress on the research of the wearable monitoring system and device. Finally, some future prospect in system design aspect and device design and fabrication aspect are proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this thesis, tool support is addressed for the combined disciplines of Model-based testing and performance testing. Model-based testing (MBT) utilizes abstract behavioral models to automate test generation, thus decreasing time and cost of test creation. MBT is a functional testing technique, thereby focusing on output, behavior, and functionality. Performance testing, however, is non-functional and is concerned with responsiveness and stability under various load conditions. MBPeT (Model-Based Performance evaluation Tool) is one such tool which utilizes probabilistic models, representing dynamic real-world user behavior patterns, to generate synthetic workload against a System Under Test and in turn carry out performance analysis based on key performance indicators (KPI). Developed at Åbo Akademi University, the MBPeT tool is currently comprised of a downloadable command-line based tool as well as a graphical user interface. The goal of this thesis project is two-fold: 1) to extend the existing MBPeT tool by deploying it as a web-based application, thereby removing the requirement of local installation, and 2) to design a user interface for this web application which will add new user interaction paradigms to the existing feature set of the tool. All phases of the MBPeT process will be realized via this single web deployment location including probabilistic model creation, test configurations, test session execution against a SUT with real-time monitoring of user configurable metric, and final test report generation and display. This web application (MBPeT Dashboard) is implemented with the Java programming language on top of the Vaadin framework for rich internet application development. The Vaadin framework handles the complicated web communications processes and front-end technologies, freeing developers to implement the business logic as well as the user interface in pure Java. A number of experiments are run in a case study environment to validate the functionality of the newly developed Dashboard application as well as the scalability of the solution implemented in handling multiple concurrent users. The results support a successful solution with regards to the functional and performance criteria defined, while improvements and optimizations are suggested to increase both of these factors.